
Properties of the Hamiltonian
Monday, 23 September 2013

When is the hamiltonian equal to the total energy?
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Practice with Summation Notation

Recall that Einstein summation notation means that when an index is repeated within a
product, it is summed over (unless stated otherwise). For a little practice, let’s introduce
two more (familiar) symbols, the Kronecker delta

δi j =
{

1 i = j

0 i 6= j

and a partial derivative with respect to one of the coordinates (in abbreviated notation)

∂i ≡ ∂

∂xi

With these definitions in mind, rewrite in more traditional vector notation and/or inter-
pret the following expressions (a) δi j v j (b) δi k vk (c) δl m xl vm (d) ∂i xi (e) δi j∂i∂ jφ

Answers: (a) vi (b) vi (same) (c) x ·v (d) ∇·x (e) ∇2φ

The Hamiltonian

On Friday, you showed that for a function of several dependent variables yi (x) and their I hope!I hope!

first derivatives, y ′
i (x), that satisfy Euler’s equation,

∂ f

∂yi
− d

d x

(
∂ f

∂y ′
i

)
= 0

that
∂ f

∂x
− d

d x

[
f − y ′

i
∂ f

∂y ′
i

]
= 0

where we employ the summation convention. The proof just requires us to differentiate
the term in brackets:

d

d x

[
f − y ′

i
∂ f

∂y ′
i

]
= ∂ f

∂x
+ ∂ f

∂yi
y ′

i +
∂ f

∂y ′
i

y ′′
i − y ′′

i
∂ f

∂y ′
i

− y ′
i

d

d x

(
∂ f

∂y ′
i

)

= ∂ f

∂x
+ y ′

i

[ ∂ f

∂yi
− d

d x

(
∂ f

∂y ′
i

)]
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If the dependent variables yi satisfy Euler’s equation, the term in brackets vanishes,
completing the proof.

For dynamics, we have recast the Euler equation to use time as the independent vari-
able and generalized coordinates qi as the dependent variables, in which case the same
statement is Remember, we are using the summation con-

vention.
Remember, we are using the summation con-
vention.∂L

∂t
− d

d t

[
L− q̇i

∂L

∂q̇i

]
= 0

We define the hamiltonian as

H = q̇i
∂L

∂q̇i
−L (1)

from which we deduce that
d H

d t
=−∂L

∂t
(2)

That is, when the Lagrangian is not an explicit function of time, the hamiltonian is
conserved—it is a first-integral of motion.

Other Properties of the Hamiltonian

We have built the lagrangian from the independent variables t , qi , and q̇i . We now show
that the hamiltonian is not a natural function of these same variables, but rather of t , qi

and pi , where the generalized momenta are defined by Definition of generalized momenta.Definition of generalized momenta.

pi ≡ ∂L

∂q̇i
(3)

Start from Eq. (1)
H = q̇i pi −L

and take the total differential:

d H = pi d q̇i + q̇i d pi −
(
∂L

∂t
d t + ∂L

∂qi
d qi + ∂L

∂q̇i
d q̇i

)
= q̇i d pi − ∂L

∂qi
d qi − ∂L

∂t
d t

where the terms in red cancel. On the other hand, if we were to treat the hamiltonian as
a function of t , qi , and pi , then we would write

d H = ∂H

∂pi
d pi + ∂H

∂qi
d qi + ∂H

∂t
d t

Comparing these two expressions for d H allows us to identify

∂H

∂pi
= q̇i

∂H

∂qi
=− ∂L

∂qi

∂H

∂t
=−∂L

∂t
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Furthermore, for a system that obeys Lagrange’s equations of motion, we have two sim-
plifications. First,

∂L

∂qi
= d

d t

(
∂L

∂q̇i

)
= d pi

d t
= ṗi

so that the canonical equations are One equation has a minus sign. You can re-
member which by noting that the second
equation is really just saying that the deriva-
tive of the kinetic energy with respect to mo-
mentum is the velocity, which certainly has
no negative sign about it.

One equation has a minus sign. You can re-
member which by noting that the second
equation is really just saying that the deriva-
tive of the kinetic energy with respect to mo-
mentum is the velocity, which certainly has
no negative sign about it.

∂H

∂qi
=−ṗi

∂H

∂pi
= q̇i (4)

These are first-order differential equations in the time for the 2N variables qi and pi . We
will talk more later about the implications thereof. Meanwhile, it is nice to look at a very
simple example to see if we should salute. Let’s pick on the simple harmonic oscillator
(mass m, spring constant k). Then T = 1

2 mẋ2, U = 1
2 kx2 and L = 1

2 mẋ2 − 1
2 kx2.

From the lagrangian we may compute the hamiltonian:

H = ẋ
∂L

∂ẋ
−L = ẋ(mẋ)− 1

2 mẋ2 + 1
2 kx2 = 1

2 mẋ2 + 1
2 kx2

However, we really should re-express H in terms of x and p = mẋ. This is not hard. We
get

H = 1

2
kx2 + p2

2m

which looks very much like the total energy of the oscillator. That’s interesting.

Do the canonical equations work? They are

∂H

∂x
=−ṗ and

∂H

∂p
= ẋ

or
kx =−ṗ and

p

m
= ẋ

The first of these is Hooke’s law, if we equate −ṗ with the force of the spring. The sec-
ond is roughly a tautology: mv/m = v . So, Hamilton’s canonical equations do indeed
describe the motion of this simple system and the hamiltonian seems to be a fancy way
of computing the total energy. Is that always the case?

When is H = E?

To answer this question, we tear apart carefully the expression that defines the hamilto-
nian:

H ≡ q̇i
∂L

∂q̇i
−L = q̇i

∂(T −U )

∂q̇i
− (T −U )

Now, we have assumed that the potential has no dependence on the velocities, so we
may simplify this expression to

H = q̇i
∂T

∂q̇i
−T +U (5)
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and the question turns on the value of the first term. This term may be expressed in
terms of the equation of transformation as Note that I have used a different dummy in-

dex of summation for the second term in each
parenthesized expression. Why couldn’t I use
the same one? Because if I used the same one
then I could only get terms like q̇1

∂r
∂q1

· ∂r
∂q1

q̇1,

never q̇1
∂r
∂q1

· ∂r
∂q2

q̇2. But the product as writ-

ten clearly has terms in which the first group
has one index and the second a different in-
dex.

Note that I have used a different dummy in-
dex of summation for the second term in each
parenthesized expression. Why couldn’t I use
the same one? Because if I used the same one
then I could only get terms like q̇1

∂r
∂q1

· ∂r
∂q1

q̇1,

never q̇1
∂r
∂q1

· ∂r
∂q2

q̇2. But the product as writ-

ten clearly has terms in which the first group
has one index and the second a different in-
dex.

T = 1

2
m

(
∂r

∂t
+ ∂r

∂q j
q̇ j

)
·
(
∂r

∂t
+ ∂r

∂qk
q̇k

)
where we assume that there is no explicit dependence of r on the generalized velocities,
q̇i . When we take a partial derivative of this expression with respect to q̇i , we will get
nonzero values only when i = j or i = k. That is,

∂T

∂q̇i
= m

2

[
∂r

∂t
· ∂r

∂qi
+ ∂r

∂qi
· ∂r

∂t
+ ∂r

∂qi
· ∂r

∂qk
q̇k +

∂r

∂q j
q̇ j · ∂r

∂qi

]
= m

[
∂r

∂t
· ∂r

∂qi
+ ∂r

∂qi
· ∂r

∂q j
q̇ j

]
Multiplying by q̇i , the first term in Eq. (5) is

q̇i
∂T

∂q̇i
= m

[
∂r

∂t
· ∂r

∂qi
q̇i + ∂r

∂qi
q̇i · ∂r

∂q j
q̇ j

]
whereas

2T = m

[
∂r

∂t
· ∂r

∂t
+2

∂r

∂t
· ∂r

∂qi
q̇i + ∂r

∂qi
q̇i · ∂r

∂q j
q̇ j

]
The difference is clearly one factor of the blue term and one of the black. That is,

q̇i
∂T

∂q̇i
= 2T −m

[
∂r

∂t
· ∂r

∂t
+ ∂r

∂t
· ∂r

∂qi
q̇i

]
= 2T −m

∂r

∂t
·
[
∂r

∂t
+ ∂r

∂qi
q̇i

]
Finally, the term in square brackets is just ṙ, the total derivative of the position with
respect to time. So, the right hand side may be expressed 2T −p · ∂r

∂t . Substituting into
Eq. (5) gives

H = T +U −p · ∂r

∂t

which shows that the Hamiltonian is equal to the total energy only when the equation
of transformation has no explicit dependence on the time.

Exercise 1 Consider once again our typical example of a mass point m moving on a
parabolic wire, z =αρ2, which is forced to rotate at ω about the vertical z axis.

(a) Is the lagrangian an explicit function of time? If not, what can you deduce?

(b) Write down the equations of transformation, r = r(t ,ρ,φ, z).

(c) Compute the hamiltonian. Is it conserved?

(d) Is the hamiltonian equal to the total energy of the mass point, T +U ?

(e) Compute explicitly the quantity p · ∂r
∂t and interpret its physical significance.
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Summary

• The motion of a conservative system with N degrees of freedom is determined by
Lagrange’s equations, which take the form

d

d t

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1,2,3, . . . , N

where the lagrangian is defined by

L(t , qi , q̇i ) ≡ T (t , qi , q̇i )−U (t , qi )

• We can exchange the variables q̇i for ∂L
∂q̇i

using a Legendre transformation: Legendre transformations are ubiquitous
in thermodynamics. For example, for a re-
versible infinitesimal transformation, the in-
ternal energy U of a compressible system
is given by dU = T dS − p dV , which im-
plies that U = U (S,V ). Subtracting the to-
tal differential of T S from both sides yields
d(U −T S) = −S dT − p dV , which shows that
F = U −T S is a function not of the entropy S
and V , but the temperature T and volume V .

Legendre transformations are ubiquitous
in thermodynamics. For example, for a re-
versible infinitesimal transformation, the in-
ternal energy U of a compressible system
is given by dU = T dS − p dV , which im-
plies that U = U (S,V ). Subtracting the to-
tal differential of T S from both sides yields
d(U −T S) = −S dT − p dV , which shows that
F = U −T S is a function not of the entropy S
and V , but the temperature T and volume V .

−H = L− q̇i
∂L

∂q̇i
=⇒ H = q̇i pi −L

where H is the hamiltonian, which is a function of (t , qi , pi ).

• When the lagrangian does not depend explicitly on the time, the hamiltonian is a
constant of the motion.

• Hamilton’s equations of motion are

∂H

∂qi
=−ṗi and

∂H

∂pi
= q̇i

They are 2N first-order differential equations for the N generalized coordinates qi

and the N generalized momenta, pi ≡ ∂L
∂q̇i

.

• When the equations of transformation do not depend explicitly on the time, ∂r
∂t =

0, the hamiltonian is the sum of the kinetic and potential energy (the total energy
of the system).
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