Problem 1 – Townsend 9.12 The wave function for a particle is of the form \(\psi(r) = (x + y + z)f(r) \). What are the values that a measurement of \(L^2 \) can yield? What values can be obtained by measuring \(L_z \)? What are the probabilities of obtaining these results?

Suggestion: Express the wave function in spherical coordinates and then in terms of the \(Y_{l,m} \)'s.

Problem 2 – Townsend 9.19 The wave function of a rigid rotator with a Hamiltonian \(\hat{H} = \hat{L}^2/2I \) is given by

\[
\langle \theta, \phi | \psi(0) \rangle = \sqrt{\frac{3}{4\pi}} \sin \theta \sin \phi
\]

(a) What is \(\langle \theta, \phi | \psi(t) \rangle \)?

Suggestion: Express the wave function in terms of the \(Y_{l,m} \)'s.

(b) What values of \(L_z \) will be obtained if a measurement is carried out and with what probability will these values occur?

(c) What is \(\langle L_x \rangle \) for this state?

(d) If a measurement of \(L_x \) is carried out, what result(s) will be obtained? With what probability?

Problem 3 – Townsend 9.21 Treat the ammonia molecule, \(\text{NH}_3 \), shown in Fig. 9.12 as a symmetric rigid rotator. Call the moment of inertia about the \(z \) axis \(I_3 \) and the moments about the pair of axes perpendicular to the \(z \) axis \(I_1 \).

(a) Express the Hamiltonian of this rigid rotor in terms of \(\hat{L}, I_1, \) and \(I_3 \).

(b) Show that \([\hat{H}, \hat{L}_z] = 0\).

(c) What are the eigenstates and eigenvalues of the Hamiltonian?

(d) Suppose that at time \(t = 0 \) the molecule is in the state

\[
|\psi \rangle = \frac{1}{\sqrt{2}} |0,0 \rangle + \frac{1}{\sqrt{2}} |1,1 \rangle
\]

What is \(|\psi(t)\rangle \)?

Problem 4 – Townsend 10.1 The position-space representation of the radial component of the momentum operator is given by

\[
\hat{p}_r \rightarrow \frac{\hbar}{i} \left(\frac{\partial}{\partial r} + \frac{1}{r} \right)
\]

Show that for its expectation value to be real: \(\langle \psi | \hat{p}_r | \psi \rangle = \langle \psi | \hat{p}_r | \psi \rangle^* \), the radial wave function must satisfy the condition \(u(0) = 0 \).

Suggestion: Express the expectation value in position space in spherical coordinates and integrate by parts.
Problem 5 – Townsend 10.7 Show that there are no allowed energies $E < -V_0$ for the potential well

$$V = \begin{cases} -V_0 & r < a \\ 0 & r > a \end{cases}$$

by explicitly solving the Schrödinger equation and attempting to satisfy all the appropriate boundary conditions.