1. **Two Orbital Boson System**

Consider a system of \(N \) bosons of spin 0, with orbitals at the single particle energies 0 and \(\epsilon \). The chemical potential is \(\mu \), and the temperature is \(\tau \). Find \(\tau \) (in terms of \(N \) and \(\epsilon \)) such that the thermal average population of the lower orbital is twice the population of the orbital at \(\epsilon \). Assume that \(N \gg 1 \) and make what approximations are reasonable.

2. **Properties of Degenerate Boson Gas**

Consider a gas of \(N \) noninteracting bosons of spin zero confined to a volume \(V \).

(a) Find the expression as a function of temperature in the region \(\tau < \tau_c \) for the energy of the system. Apply the same technique we used in class. Put the definite integral in dimensionless form, which can then be evaluated numerically.

\[
\int_0^\infty dx \frac{x^{3/2}}{e^x - 1} = 1.006\pi^{1/2} = 1.783
\]

(b) Find the heat capacity, \(C_V \), of the system in the same temperature range. Sketch \(C_V/N \) as a function of \(\tau \).

(c) Explain what value \(C_V \) must approach in the high temperature limit and complete your plot of \(C_V/N \) for \(\tau > \tau_c \). Compare your result with the heat capacity of ideal Bose gas shown in Schroeder (Figure 7.37). Do you see the same discontinuous change in the slope of \(C_V(\tau) \) at \(\tau_c \)?

(d) Calculate the entropy of the boson gas for \(\tau < \tau_c \).

(e) Calculate the Helmholtz free energy and pressure of the boson gas for \(\tau < \tau_c \). Note that the pressure is independent of volume. How can this be?

3. **Heat Capacity of Liquid He**

Schroeder, 7.61

4. **Properties of Ferromagnets**

Schroeder, 7.64