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A general method for computing harmonic generation in reflection and transmission from planar
nonmagnetic multilayer structures is described. The method assumes plane waves and treats har-
monic generation in the parametric approximation. The method is applied in studying the second-
and third-harmonic generation properties of thin crystal silicon layers surrounded by thermal oxide.
Most independent components of the nonlinear susceptibility tensor have unique signatures with
silicon layer thickness d, allowing their strength to be determined in principle by measuring har-
monic generation as a function of d. Surface and bulk contributions to third-harmonic generation
are cleanly distinguished, with the bulk signal dominating. Four of six nonvanishing components
of χ(2) are independent. An approximate value for the bulk susceptibility component δ′, which is
accessible only in multibeam experiments and has not previously been measured, is obtained.

PACS numbers: 42.65.An, 42.65.Ky, 42.70.Nq

I. INTRODUCTION

Optical harmonic generation launched the field of non-
linear optics in 1961,1 soon after the invention of the
laser, and has remained an active area of fundamental
research and applications in the over forty years since.
Harmonic generation with femtosecond laser pulses pro-
duces strong signal levels with only modest energy depo-
sition in absorbing samples,2 and can provide valuable in-
formation on crystal structure and orientation,3,4 as well
as structure and bonding at surfaces and interfaces.5–7

Furthermore, the technique is nondestructive and com-
patible with a variety of experimental conditions.2,8–10

Early papers by Bloembergen et al. presented the basic
parametric theory of harmonic generation within a ho-
mogeneous medium11 and at the plane interface between
a linear and nonlinear medium,12 including a treatment
of the reflected and transmitted second-harmonic light
from a thin nonlinear dielectric slab. They showed that
for layer thickness d satisfying d� λ, the generated har-
monic field depends linearly on d. Hence, the second-
harmonic intensity grows quadratically with thickness in
this range, since all the atoms in the layer radiate coher-
ently.

In the simplest formulation, one neglects reflections
at the interfaces and considers a single beam within the
layer. For semiconducting or metallic layers surrounded
by transparent media, the dielectric contrast at interfaces
can be large, and failure to include the reflections distorts
the calculation significantly. For layer thicknesses that
are comparable to, or smaller than, the absorption depth
at the fundamental and at the harmonic frequency, inter-
ference between the forward and backward waves is sig-
nificant and appreciably modifies the observed harmonic
light in reflection and transmission. In the case of crys-
tal silicon layers surrounded by SiO2, the (field) reflec-
tion coefficient for a fundamental wave with λ = 800 nm
is ∼40%, rising to ∼55% at the second harmonic, and
∼ 80% at the third harmonic. These reflections cause
deep modulations in the strength of the incident wave

inside the silicon layer, and hence in the strength of the
nonlinear source polarization generated within it. In sys-
tems comprising layers with large reflection coefficients,
such as Si/SiO2, therefore, it is essential to consider the
nonlinear sources arising not only from the incident wave,
but from all combinations of the incident and reflected
fundamental waves inside the layer.

A matrix method has long been employed to compute
the fundamental waves in multilayer structures.13,14 We
describe here a generalization of the standard matrix
method which computes the reflected and transmitted
waves of the nth harmonic that are generated both within
a set of nonlinear layers in a multilayer structure, and
from the interfaces between the layers. It is used to de-
scribe the reflected second-harmonic light, and transmit-
ted third-harmonic light, from Si(001) layers surrounded
by thick thermal oxide layers as a function of the thick-
ness of the upper SiO2 and the silicon layer. In general,
the harmonic waves arising from different source polariza-
tions, whether bulk or surface, depend differently on the
silicon layer thickness, d. Consequently, the thickness de-
pendence of the reflected or transmitted harmonic wave
can yield valuable information on the relative strength
of the various contributions to harmonic generation, and
can discriminate between surface and bulk sources.

In the case of third-harmonic generation (THG) from
silicon, surface and bulk sources have significantly differ-
ent dependence for d < 20 nm and this can be used to
assess suggestions of a significant surface enhancement to
THG.15,16 For second-harmonic generation (SHG) from
a (001) surface, distinguishing the surface and bulk con-
tributions is more involved. Many authors have argued
strenuously that the second-harmonic signal from Si(001)
arises from the surface, not the bulk.8,17–19 The argu-
ments have been based on symmetry considerations, as
well as the influence of surface modifications, such as re-
construction in UHV and exposure to oxidation. Heinz et
al. observed a pronounced decrease in second-harmonic
generation from 7×7 reconstructed Si(111) surfaces that
were exposed to sufficient oxygen to produce roughly one
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atomic layer.8 They attributed this drop to a disordering
of the surface electronic states caused by the oxidation,
although some portion of the decrease undoubtedly arises
from the shifting of dangling electronic states by bond-
ing with oxygen atoms. Regardless of the mechanism,
however, they argued that the strong influence of a sin-
gle atomic layer of oxygen on the signal demonstrated
that the second-harmonic signal was dominated by the
surface.

As demonstrated by Sipe et al., however, there is a fun-
damental difficulty in separating the SHG arising from
the bulk isotropic source (parameterized by γ in Eq. (4)
below) and from one of the surface sources for reflected
SHG from a semi-infinite slab.20,21 Unfortunately, this re-
mains true for a thin layer of varying thickness, as well.
Lüpke et al. made clever use of oxidized vicinal (mis-
cut) Si surfaces to effect a separation, finding that the
isotropic bulk contribution to the second-harmonic sig-
nal to be an order of magnitude greater than the surface
contribution,22 in contradiction to many previous find-
ings. However, the results for the isotropic response were
not unambiguous on a Si(001) surface.23 In the present
case of SHG from thin layers, all terms but the pair dis-
cussed by Sipe have unique signatures with layer thick-
ness d; hence, their relative importance can be investi-
gated by measuring the thickness dependence of the re-
flected second-harmonic light.

In the following section, the method we use to com-
pute the nth harmonic generated by a multilayer struc-
ture are outlined, with the details left to an appendix.
We then describe the fabrication and characterization of
SiO2/Si/SiO2 thin-film structures, which we produce by
oxidation of silicon-on-insulator substrates. By using a
spatial temperature gradient during a portion of the ox-
idation process, the silicon layers are gently tapered to
facilitate measurements of the harmonic generation prop-
erties as a function of silicon layer thickness.16,24,25 We
report the third-harmonic-generation properties of the
multilayers in rotation and in translation across the thick-
ness gradient. The results are found to be well described
by the dipole-allowed bulk source, with negligible surface
contribution. We then report measurements, in rotation
and as a function of layer thickness, of the SHG from
these samples, and discuss their significance in light of
literature values for the second-harmonic susceptibility
components. We conclude with a discussion of the po-
tential of the approach, and the appendix which discusses
in detail the matrix method of computing harmonic gen-
eration from multilayers.

II. THEORY

As light passes through a multilayer structure it re-
fracts and reflects at each interface, leading to waves in-
side the structure that propagate in both the forward
and backward directions. When the strength of the re-
flected wave is appreciable, interference between the in-
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FIG. 1: The electric field strength just inside the front surface
of a silicon layer on a SiO2 substrate as a function of silicon
layer thickness. The calculation assumes an upper layer of
SiO2 produced by partial oxidation of a 200-nm Si(001) layer,
as illustrated in the inset.

cident and reflected waves leads to a significant modula-
tion of the fundamental field strength within the layers.
In the Si/SiO2 system, for example, the field strength for
a p-polarized fundamental wave at 800 nm, incident at
45◦, varies by more than 50% with silicon layer thickness
d, as shown in Fig. 1. The variation for an s-polarized
wave is even greater. Since the field in the layers gen-
erates an nth order nonlinear polarization proportional
to the nth power of the field strength, the nonlinear po-
larization exhibits an even stronger modulation than the
fundamental field. It is thus necessary to include both
the incident and the reflected waves in the computation
of the nonlinear polarization.

The reflected fundamental wave in the multilayer gives
rise to another significant difference in the problem. The
nth-order polarization at frequency Ω = nω, P (n)(Ω),
arises from n factors of the fundamental field, which now
has both forward- and backward-going terms. Hence,
the nonlinear polarization comes from all combinations
of forward and backward waves. The backward wave
being weaker, the terms tend to diminish with the num-
ber of factors of the backward field. However, the phase
mismatch for a source polarization that combines fields
from both the forward and backward waves—as well as
combinatorics—may compensate this reduction, so that
terms combining both forward and backward waves may
dominate the nonlinear polarization. Such is indeed the
case for third-harmonic generation with a fundamental
beam at λ = 800 nm in thin silicon layers surrounded
with oxide. Furthermore, the presence of forward and
backward waves in a cubic material relaxes a symmetry
constraint on the second-harmonic susceptibility, leading
to an additional bulk contribution to the nonlinear po-
larization that is not present in single-beam experiments.

We have developed an extension to the standard ma-
trix method for computing (linear) transmission and re-
flection from multilayers to calculate the reflected and
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FIG. 2: (Color online) (a) The beam is incident at θ on layer
1, whose upper surface is at z = 0. Note that the outward nor-
mal of layer 1 is in the positive z direction. For convenience in
certain expressions, the incident medium is numbered 0 and
the substrate is numbered L+1. (b) Reflection and refraction
at the boundary between layers j and j + 1. All waves have
the same component κ parallel to the interface in the plane of
incidence (POI); the z component of the wave vector in each
layer j is denoted wj and is found from Snel’s law. (c) Re-
lationship between POI axes (ˆ� ,−ŝ, ẑ) and crystallographic
axes (x̂, ŷ, ẑ). The azimuthal angle ψ measures the rotation
of crystallographic [100] from the ˆ� direction.

transmitted harmonic waves from multilayer systems
composed of both linear and nonlinear layers. We assume
nonmagnetic materials (µ = 1), and hence waves with
their electric vector in the plane of incidence (p-polarized)
are decoupled from those with their electric vector per-
pendicular to the plane (s-polarized). The principal steps
of the calculation are outlined here, with details left to
the appendix.

The incident wave has the form

e(0)(r, t) =
[
e−(0)sŝ + e−(0)pp̂

]
ei(k·r−ωt) + c.c. ,

where the wave vector is k = κκ̂−w(0)ẑ, and κ = ω̃ sin θ,
w(0) = ω̃ cos θ, and ω̃ = ω/c. The unit vectors ŝ and p̂
are indicated in Fig. 2, and we take ẑ to be the surface
normal with positive projection along the direction of the
reflected beam. (In most respects, the notation follows
Ref 20.) We use lowercase symbols for the fundamental
fields, and uppercase symbols for polarizations and fields
at the nth harmonic. Subscripts in parentheses indicate
the layer number.

The first step is to compute the fundamental fields
throughout the multilayer using the usual matrix
method,13,14 which represents the forward and backward
waves at each depth in the multilayer structure as a two-
dimensional column vector. A diagonal 2 × 2 complex
matrix describes the evolution of the waves as they prop-
agate through each layer, and a symmetric 2× 2 matrix
describes reflection and transmission at each interface.
Multiplying in order the succession of interface and layer
matrices yields a single matrix which describes the cou-
pling of forward and backward waves through the entire

structure:

(
e+

(0)s(0)

e−(0)s(0)

)
=

(
a11 a12

a21 a22

)(
e+

(L+1)s(−D)

e−(L+1)s(−D)

)
. (1)

Since there is no wave incident from the back of the mul-
tilayer structure at z = −D, e+

(L+1)s(−D) = 0, and we

can solve for the reflected and transmitted fields, e+
(0)s(0)

and e−(L+1)s(−D), respectively. An expression identical in

form exists for the p-polarized component of the incident
wave, although the coefficients of the transfer matrix are
generally different.

The next step is to compute the nonlinear polarization
at the harmonic frequency Ω = nω induced in the bulk of
a nonlinear layer. The form of this polarization depends
on the order of the nonlinear process and the symmetry of
the material. Details aside, the matrix method allows one
to compute the reflected and transmitted harmonic light.
For specificity in the case of layers with cubic symmetry,
such as silicon, the bulk polarization for both second-
harmonic and third-harmonic generation takes the form

P
(2ω)
i = χ

(2)
ijkl ẽj∇k ẽl , (2)

P
(3ω)
i = χ

(3)
ijkl ẽj ẽkẽl , (3)

where χ
(n)
ijkl is a fourth-rank tensor, repeated indices are

summed over, and the tilde indicates the sum of forward
and backward waves. It is customary in these expressions
to use the field inside the layer, thereby avoiding ambigu-
ity at the discontinuity at the interface;26 the gradients
are with respect to the field coordinates. Cubic sym-
metry implies that components of χ(n) having an odd
number of indices along any Cartesian direction (in the
conventional cubic crystal basis) must vanish. There are

thus only two independent nonzero components of χ
(3)
ijkl,

which we denote χ1111 and χ1122. The six distinct per-
mutations of the indices in the second term are all equal.

The second-harmonic case is slightly more compli-
cated, since one of the indices corresponds to a deriva-
tive and can thus be distinguished from the other two.
Following Bloembergen, we will express the second-
harmonic polarization in the form

P
(2ω)
i (r) = βei(∇·e) + γ∇i(e ·e) + ζei∇iei + δ′(e ·∇)ei ,

(4)
where β, γ, ζ, and δ′ are phenomenological constants and
the axes are assumed to coincide with the standard cu-
bic crystal axes.3,27,28 The first term vanishes for plane
waves; the second (bulk isotropic) term produces a po-
larization independent of crystal orientation; the third
(bulk anisotropic) term produces an anisotropic polar-
ization, which leads to a modulation in the generated
second-harmonic light as the crystal is rotated about its
surface normal; and the fourth (mixed source) term van-
ishes for isolated plane waves, but in multilayer structures
produces a polarization parallel to the layers and in the
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plane of incidence. Measurements on multilayer struc-
tures can thus provide information on a phenomenolog-
ical susceptibility component, δ′, that is inaccessible to
single-beam experiments on thick samples.

Irrespective of the detailed form of the nonlinear source
polarization, it generates bound and free harmonic waves
in the bulk of the jth layer that together solve the (in-
homogeneous) wave equation26

∇(∇ · Em
(j))−∇2Em

(j) − Ω̃2N2Em
(j) = 4πΩ̃2Pm

(j) . (5)

In this expression, the nonlinear polarization Pm
(j) in-

cludes n factors of the fundamental field, of which m
come from the backward (reflected) fundamental wave
and (n−m) from the forward (transmitted) fundamen-
tal wave. Boundary conditions at the interface require
that all waves have the same in-plane component of the
wave vector, Kκ̂ = K(ẑ × ŝ). The bound wave has the
form

Em
(j) = Am

(j)e
iKx+iqm(j)z−iΩt + c.c. , (6)

where Am
(j) is a constant vector whose magnitude and di-

rection depend on the nonlinear source polarization Pm
(j),

as well as the linear optical response at ω and Ω, and the
wave vector of the bound wave, and

qm(j) = (2m− n)w(j) (7)

is the z-component of the bound wave vector. The free
waves traverse the layer in the forward and backward
directions consistent with the interfacial boundary con-
ditions; namely, with wave vectors

K±(j) = Kκ̂±W(j)ẑ . (8)

Mathematically, they “interact” with the bound waves
purely at the interfaces, where boundary conditions ob-
tained from the Maxwell equations cause discontinuities
in the freely propagating waves at Ω (see Eqs. (38)-(41)).

In addition to the bulk nonlinear polarization, there
may be surface nonlinear sources, which also contribute
to the discontinuities of the free harmonic waves. Crys-
tal symmetry that prohibits even-order harmonic gener-
ation in the dipole approximation is broken at an inter-
face, leading to an enhanced role for surfaces and inter-
faces. Furthermore, the strong gradient in electric field
across an interface between dissimilar dielectric mate-
rials may cause a significant enhancement in harmonic
generation.21,28 Assuming that the interfacial region is
at most a few atoms thick, the phase difference across
the thickness can be neglected and the local and nonlocal
nonlinear response of the interface can be represented28

by a surface nonlinear polarization and susceptibility of
the form

P S
i (2ω) = χS

ijk ejek δ(z − z0) = Πi δ(z − z0) .

P S
i (3ω) = χS

ijkl ejekel δ(z − z0) = Πi δ(z − z0) .
(9)

With no loss of generality, the nonlinear dipole sheet is
assumed to lie just within the layer.21 For an interface at
z0 between (upper) layer j and (lower) layer j + 1, layer
j’s dipole sheet is at z0 +δ and layer (j+1)’s is at z0−δ.

Once the nonlinear sources are known, we can relate
the freely propagating harmonic fields at each interface
via

(
E+

(j)

E−(j)

)
= t−1

(
1 r
r 1

)(
E+

(j+1)

E−(j+1)

)
+

(
S+

(j)

S−(j)

)
, (10)

where r = r(j,j+1) and t = t(j,j+1) are the reflection and

transmission coefficients at Ω, and the terms S±(j) combine

the surface and bulk field discontinuities at the interface
(see Eqs. (46) and (56)). The remainder of the solution
follows the linear case. The key point here is that the
bulk and surface polarization terms in S±(j) are series of

the form

n∑

m=0

cm

(
n

m

)
[e−(j)]

n−m [e+
(j)]

m eiq
m
(j)d + c.c. (11)

in the thickness d of layer j. The coefficients cm depend
on the incident angle, polarization, linear dielectric prop-
erties of the layer at both ω and Ω, as well as the nor-
mal component of the source polarization (for the bulk
terms). In general, different susceptibility components
give rise to different coefficients cm, and so have different
dependence on the layer thickness d. This is illustrated
in Fig. 3, which shows the thickness dependence of the
one surface and four bulk sources of third-harmonic gen-
eration in the cubic material silicon. (Here and in the fol-
lowing, we assume negligible THG from SiO2.) Clearly,
a measurement of the thickness dependence of THG can
distinguish between the surface and bulk mechanisms.

III. EXPERIMENT

Thin silicon layers surrounded by SiO2 were pre-
pared from Unibond silicon-on-insulator substrates spe-
cially manufactured by Soitec, which had a 200-nm c-
Si(001) layer press-bonded to a fused silica substrate.29,30

Roughly rectangular pieces were cut from the 4-inch
wafers, with their long axis aligned with the [110] direc-
tion. The pieces were oxidized in dry O2 in a quartz tube
furnace at temperatures between 950◦C and 1050◦C. A
spatial temperature gradient was used to produce a sili-
con layer of gently tapered thickness24,25 varying by ap-
proximately 30 nm over a lateral distance of ∼30 mm.
The structure is illustrated in the inset of Fig. 1. The
gradual taper of the layer permits the thickness depen-
dence of the harmonic light generated either in reflection
or transmission to be investigated on a single sample with
consistent orientation and oxide-interface conditions. To
explore layer thicknesses d from 0 to 120 nm, several dif-
ferent samples were prepared having overlapping thick-
ness ranges.
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FIG. 3: (Color online) Silicon layer thickness dependence of
each term in the third-order nonlinear polarization to the
transmitted third-harmonic amplitude at normal incidence.
Notice that among the bulk terms, the term arising from two
factors of the field in the incident direction and one in the re-
flected direction (m = 1) produces the strongest signal. Note
also that the rise in the surface term is appreciably slower
for d < 10 nm than the bulk terms. A measurement of the
thickness dependence of the transmitted THG thus permits
one to distinguish surface and bulk contributions.

The roughness of the upper Si-SiO2 interface was in-
vestigated with atomic force microscopy after remov-
ing the upper oxide layer with buffered HF. This treat-
ment causes minimal distortion of the silicon surface.
The RMS roughness of the exposed surface was typically
≈ 0.2 nm for a layer thickness of 15 nm, as determined
from scans 230 nm on a side.

The thickness profile of the silicon layer and oxide over-
layer were determined by measuring normal-incidence
transmission spectra with a spectrophotometer in the
range 200–800 nm, and fitting to the thin-film equations.
Typical spectra and fits are shown in Fig. 4, from which
a smooth mapping of position x along the length of the
sample into silicon layer thickness d was created for each
sample. An example is shown in the inset of the figure.

With decreasing d below 6 nm, departures from the
dielectric function of bulk c-Si (Ref. 14) were observed,
particularly in the neighborhood of the E1 point at
3.39 eV.31,32 In this thickness range quantum confine-
ment effects significantly modify the dielectric function.
However, good fits were obtained using Yamaguchi’s
thickness-dependent semi-empirical model of the dielec-
tric function of c-Si layers,32 as illustrated in Fig. 5.

The third-harmonic generation properties of the sili-
con layers were studied using a 100-MHz mode-locked
Ti:sapphire laser (Clark-MXR NJA-5) producing 60-fs
pulses centered at 820 nm, and the setup illustrated in
Fig. 6.16 The beam was polarized with a Glan-laser po-
larizer and focused with a 40-mm focal length lens to
a spot radius of 7 µm; the peak intensity was below
20 GW/cm2. The transmitted THG was analyzed with
an identical Glan-laser polarizer, then dispersed with an
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FIG. 6: Optical setup of the THG measurements. The signal
from the PMT was recorded either via photon counting, for
measurements as a function of film thickness, or as current
using a picoammeter, for the rotational scans.

equilateral fused silica prism, and detected by a thermo-
electrically cooled photomultiplier tube (PMT). A 20-nm
bandpass interference filter centered at 266 nm rejected
stray fundamental light. Care was taken to align the
sample plane with the translation axis to within 2 mrad
to avoid changes in focusing at the surface when measur-
ing the thickness dependence of the THG. The TH signal
generated in transmission for a fundamental beam inci-
dent along the sample normal was measured as a function
of sample rotation ψ at fixed sample position, using a ro-
tation stage. It was also measured as a function of posi-
tion for fixed sample rotation, using a translation stage.

The same laser system was used to investigate second-
harmonic generation from the same set of oxide-cladded
silicon layers in reflection at 45◦ incidence. For these
measurements, the final interference filter was replaced
with a pair of blue glass filters to block stray fundamental
light.

In addition, the SHG properties of the samples were
studied using a 1-kHz amplified Ti:sapphire laser system
(Spectra-Physics Millennia-pumped Tsunami seeding an
Evolution-pumped Spitfire) producing 60-fs pulses. The
setup is illustrated in Fig. 7. The beam was chopped
at ∼ 320 Hz and the output of the PMT was detected
with a digital lock-in amplifier. A 780-nm long-pass fil-
ter was placed immediately prior to the focusing lens to
remove any blue light generated at mirror surfaces prior
to the sample, and to provide a reference reflection. This
reflected beam was focused into a KDP crystal and the
generated blue light was detected with an amplified sil-
icon photodiode to monitor laser stability. Additional
amplified photodiodes were used to monitor the reflected
and transmitted fundamental beams.

To avoid excessive intensity on the sample, the beam
was focused with a 10-cm focal length cylindrical lens
to a width of ∼20 µm along the direction of the silicon
thickness gradient, as measured by replacing the sample
with a razor blade and monitoring the transmitted beam.
The average irradiance was less than 90 W/cm2 and the
peak intensity was approximately 600 GW/cm2.

Although this peak intensity exceeds the reported
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FIG. 7: (Color online) Setup for measuring SHG with the
amplified laser system. The 1-kHz beam is mechanically
chopped, and filtered with a long-pass glass filter to remove
blue light generated at metal mirror surfaces prior to the sam-
ple. The beam is focused with a cylindrical lens onto the sam-
ple mounted parallel to the translation axis of a computerized
stage. The reflected SHG is detected with a cooled PMT and
measured with a digital lock-in amplifier. The reflected and
transmitted fundamental beams are detected with amplified
photodiodes PD2 and PD3, as is the second-harmonic pro-
duced by the portion of the input beam reflected from the
long-pass filter (PD1).

damage threshold for silicon of 100 GW/cm2,7 we
observed no permanent damage to the sample at
these intensities and obtained results entirely consis-
tent with those using the unamplified laser system and
< 20 GW/cm2 on all samples. Presumably, the thick
upper oxide layer serves to stabilize the silicon surface.

IV. RESULTS

A. Third Harmonic

Rotational scans of the third-harmonic intensity polar-
ized parallel and perpendicular to the incident field are
shown in Fig. 8. The parallel-polarization data were ob-
tained at a silicon thickness of 34 nm; they were fitted to
the expression

I‖(3ω) ∝ [3χ1111 + 3χ1212 − (3χ1212 − χ1111) cos 4ψ]
2

∝ [(4 + σ)− σ cos 4ψ]
2
, (12)

where σ ≡ 3χ1212/χ1111 − 1 is the anisotropy
parameter.33 The resulting value of σ = 0.71±0.01 is con-
sistent with previous work on bulk samples using 770-nm
femtosecond pulses,15,22 and differs slightly from a value
at 819 nm using nanosecond pulses.33

The perpendicular THG has the expected eightfold de-
pendence given by

I⊥(3ω) ∝ χ2
1111 sin2 4ψ . (13)
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FIG. 8: (Color online) Normal-incidence transmitted THG
from thin silicon layers as a function of azimuth ψ with respect
to the (100) direction. The THG polarized parallel to the
fundamental beam was taken where the layer thickness was
34 nm; the perpendicular THG was taken at 22-nm thickness.
The smooth curves are fits to Eqs. (12) and (13), as discussed
in the text.

The scan shown here was taken at a layer thickness of
22 nm; similar traces were obtained for both parallel and
perpendicular polarization throughout the range of this
sample, which was 0–35 nm. The rotational THG scans
thus confirm nicely the cubic symmetry of the silicon
samples, although they cannot distinguish surface and
bulk contributions, which have identical symmetry.

As is clear from Fig. 3, the dependence of the trans-
mitted THG on silicon layer thickness d can distinguish
the two contributions. The data for the critical region
satisfying d < 30 nm are shown in the upper panel
of Fig. 9, along with computed curves that assume ei-
ther pure bulk third-harmonic generation or pure surface
third-harmonic generation. The polarizer and analyzer
were parallel for these data, and aligned with the [110]
axis of the silicon layers. The signal level at negative
layer thickness (corresponding to positions with no re-
maining silicon, as indicated in the inset of Fig. 1) repre-
sents a background level of stray fundamental light leak-
ing through the interference filter, as was confirmed by
its linear dependence on laser intensity. We thus confirm
that third-harmonic generation from a bare SiO2 sur-
face is weaker by at least a factor of 100 than that from
a silicon layer a few nanometers thick. Note that the
background light was more effectively suppressed in the
rotational data of Fig. 8 due to the significantly greater
distance between the prism and the PMT in that setup.

B. Second Harmonic

The second-harmonic case in silicon is significantly
more involved than the third-harmonic case, since there
are many more symmetry-allowed susceptibility com-
ponents. In addition to the bulk terms γ, ζ, and
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FIG. 9: (Color online) Transmitted third-harmonic intensity
as a function of silicon layer thickness at normal incidence.
Different symbols correspond to different samples. Data at
negative silicon layer thickness correspond to regions on the
sample in which the silicon layer has been entirely oxidized.
These serve to show the background signal level, which is
dominated by scattered fundamental light. The smooth curve
shows a calculation of the expected THG assuming purely a
bulk source, scaled to match the data at large d; similarly,
the dashed curve assumes solely a surface source. The lower
panel shows the data from five different samples; the upper
panel shows the same data in the range d < 30 nm.

δ′ of Eq. (4), for a Si(100) surface there is a surface
polarization26
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(14)

that is parameterized by three independent susceptibility
components, ∂31 ≡ ∂zxx, ∂33 ≡ ∂zzz , and ∂15 ≡ ∂xxz.
Note that the Cartesian indices here refer to the standard
cubic basis. All three of these terms produce a nonlinear
polarization that lies in the plane of incidence, and hence
they contribute only to p-polarized SHG. Furthermore,
they are independent of azimuth ψ for rotation about
the surface normal. The same is true for the bulk terms
proportional to γ and δ′. Only the ζ term gives rise to
rotational anisotropy; it alone produces s-polarized SHG
for an s- or p-polarized incident beam. For p-polarized
incident light, the s-polarized SHG has the form

Ips(ψ) ∝ sin2(4ψ) . (15)

The bottom two traces in Fig. 10 show the measured



8

0.1

1

10

100

1000

SH
 I

nt
en

si
ty

 (
nA

)

360°315°270°225°180°135°90°45°0°
�

7 nm

13 nm

21 nm
26 nm
32 nm

13 nm

4 nm

pp
 S

H
G

ps
 S

H
G

FIG. 10: (Color online) Intensity of reflected second harmonic
from thin silicon layers as a function of rotation angle ψ about
the sample normal for a p-polarized fundamental beam inci-
dent at 45◦. The lower two traces show s-polarized SHG for 4
and 13 nm layers. They show the expected zeroes every 45◦,
but uneven maxima between them. The upper 5 traces show
the p-polarized SHG from the silicon layer from thicknesses
between 7 nm and 32 nm. These approximate the 4-fold sym-
metry expected for (001) surfaces, and a degree of modulation
that clearly depends on the layer thickness.

ps-SHG as a function of sample rotation ψ for two thick-
nesses of silicon layer. The p-polarized laser beam was
incident at 45◦; the data were recorded by rotating the
sample at the rate of 1 revolution per minute and digi-
tizing the output of a picoammeter monitoring the PMT
current. Care was taken to ensure that the incident laser
beam was focused on the center of rotation, and that the
sample normal coincided with the rotation axis. Scans
frequently ran for 2 revolutions, to ensure consistency
and to check for any laser-induced modification of the
sample. Although both traces exhibit the expected ze-
roes every π/4, the eight maxima at π

8 (2n + 1) are not
all equivalent, as predicted by Eq. (15). Care was taken
to ensure that the polarizer and analyzer were properly
oriented by adjusting for maximum extinction of the fun-
damental beam, with a resolution of 0.1◦. Traces were
also taken with the polarizers slightly misaligned, result-
ing in increased asymmetry of the 8 peaks. The two
traces shown in Fig. 10 are representative of the most
symmetric Ips(ψ) scans obtained on this and other sam-
ples.

The upper 5 curves show Ipp(ψ) for thicknesses from
7 nm to 32 nm. The expected form for these curves is

Ipp(ψ) ∝ |1 + ρ cos(4ψ)|2 , (16)

where the fourfold term arises from the bulk anisotropic
source (ζ), whose relative strength ρ is compared to the
combination of the surface sources and the two isotropic
bulk sources (γ and δ′). As is the case for Ips, the curves
of Ipp(ψ) depart from the expected fourfold symmetry
of Eq. (16), shown in the smooth curves. Despite this
disagreement, it is clear from the traces that the rela-
tive magnitude of the modulation (the relative strength
of the ζ term to the sum of the other terms) depends
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FIG. 11: (Color online) p-polarized SHG from a p-polarized
fundamental (upper panel) and from an s-polarized funda-
mental (lower panel) as a function of silicon thickness d.
These data were taken at 45◦ incidence using the amplified
laser system with lock-in detection of the PMT current. Data
from the five samples of Fig. 9 are superposed here. Data at
negative silicon thickness are taken past the edge of the silicon
film and show the background level from the SiO2 substrate.

appreciably on the silicon layer thickness. This is to be
expected from Eq. (11), and is consistent with the princi-
pal idea that the dependence of harmonic generation on
d can provide information on the strength of the various
sources and susceptibility components.

The thickness dependence of p-polarized SHG was
studied using the setup of Fig. 7 and the five samples
whose third-harmonic properties had been studied previ-
ously. They were translated parallel to the plane of inci-
dence and in the direction of the silicon thickness gradi-
ent along [110]. In addition, the intensity of the reflected
and transmitted fundamental beams were recorded, as
was a reference SHG beam obtained by doubling a re-
flected portion of the incident beam in a KDP crystal.
The results are shown in Fig. 11. The various scans were
scaled modestly to match in the regions of overlap, con-
sistent with day-to-day variations in the laser intensity.

Both Ipp(2ω) and Isp(2ω) exhibit minima near d =
50 nm and maxima near d = 110 nm, consistent with
the minimum and maximum in the laser field inside the
silicon layer (see Fig. 1). However, Ipp(2ω) displays ad-
ditional pronounced minima at ≈ 8 nm and ≈ 95 nm.
The minimum at 8 nm is particularly remarkable, as this
length is significantly shorter than any other length scale
in the problem (see Table I). However, it is a robust
feature that appears in multiple samples. Furthermore,
the linear reflectivity is perfectly well behaved in this re-
gion, as was the third-harmonic signal from these samples
(Fig. 9).
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TABLE I: Length scales in silicon. λ0 is the vacuum wave-
length, λ is the wavelength in silicon, 2α−1 is the electric
field e-folding length, where α is the (intensity) absorption
coefficient.

Wave n λ0 λ 2α−1

ω 3.69 + 0.0065 i 800 nm 217 nm 19.6 µm
2ω 5.57 + 0.39 i 400 nm 72 nm 163 nm
3ω 1.86 + 4.47 i 267 nm 144 nm 9.4 nm

V. DISCUSSION

We begin with the third-harmonic data, which is sim-
pler to interpret. Figure 8 shows excellent agreement
with the expected 4-fold symmetry of the cubic mate-
rial silicon, demonstrating clean THG signals and bulk
symmetry. Furthermore, the thickness-dependence data
of Fig. 9 show excellent agreement with the bulk-only
curve, and significant disagreement with the surface-only
curve, for the range 0 ≤ d ≤ 20 nm over which the curves
are distinguishable. At minimum, 90% of the THG sig-
nal arises from the bulk. For thicknesses greater than
20 nm, the two curves coincide, showing a pronounced
dip at d = 50 nm, and a maximum near d = 120 nm.
These modulations track the intensity of the fundamen-
tal beam, which arise from thin-film interference at the
laser wavelength (see Fig. 1). The absorption depth at 3ω
is only α−1 = 4.8 nm, so that light generated in the back-
ward direction and reflected off the input face is strongly
attenuated in propagating through the layer to the exit
face. Significant interference between the forward and
backward waves induced at 3ω only occurs for d . 2α−1,
and it is this interference which gives rise to the differ-
ence between surface and bulk contributions to harmonic
generation. For d . 2α−1 the thickness dependence of
harmonic generation can thus distinguish between differ-
ent sources of harmonic generation.

Interpreting the second-harmonic results presents sig-
nificant challenges compared to the third-harmonic data,
both because there are many more unknown suscepti-
bility terms and because of the increased prominence of
the surface. Third-harmonic generation is not symmetry
forbidden in the dipole approximation in silicon, and so
one expects the bulk to dominate by virtue of the greater
number of atoms able to participate. This is indeed con-
firmed here in Fig. 9.

Second-harmonic generation is dipole-forbidden in the
bulk, and so we expect surface nonlinear sources to play a
significant, if not dominant, role. For an ideal (001) sur-
face, the additional 3 terms—parameterized by 3 complex
susceptibility components, or 6 real coefficients—present
no conceptual complication beyond the well-known fact
that the bulk isotropic term γ is indistinguishable from
the surface term ∂31.20

However, an ideal (001) surface should produce four-
fold symmetry in p-polarized SHG and eightfold symme-
try in s-polarized SHG on rotation about the normal.
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FIG. 12: (Color online) p-polarized SHG as a function of layer
thickness for s-polarized excitation. The upper panel shows
the data and two calculated curves. The solid curve uses
the susceptibility components of Table II; the broken curve
assumes ζ = −120 + 170 i (holding γ and ∂31 unchanged).
The lower panel shows the intensity produced by each sus-
ceptibility component in isolation. Note that γ and ∂31 are
degenerate.

The third-harmonic rotational scans (Fig. 8) do exhibit
analogous symmetries because of the dominant role of
the bulk, but the second harmonic results of Fig. 10 show
significant departures. Regarding our samples, we incline
to Pauli’s view that “God made solids, but surfaces were
the work of the Devil.” Ours are unintentionally miscut
away from the (001) surface in an unknown direction and
magnitude.

Lüpke et al. used surfaces intentionally miscut along di-
rections of high symmetry to deduce from rotational SHG
scans the magnitudes and phases of the various bulk and
surface susceptibility components at λ = 765 nm.22 Their
results appear in Table II. Assuming we may neglect dis-
persion in χ(2) between 765 nm and 800 nm, these coeffi-
cients should provide a reasonable approximation to our
Isp(d) data, which depend only on the bulk anisotropic
term ζ and the sum of the bulk isotropic term γ and
the zxx surface term ∂31, which are degenerate. The
curve computed with values of Table II is shown super-
imposed on the data in the solid curve of the upper panel
of Fig. 12. The calculation has been scaled to match the
data approximately in the region of strongest signal near
d = 70 nm. Clearly, it disagrees significantly from the
data in a number of respects, most notably in an order-
of-magnitude overshoot in the initial rise with d.

The lower panel of the figure shows curves of reflected
second-harmonic intensity computed for each suscepti-
bility component in isolation; i.e., the predicted reflected
second-harmonic intensity obtained from a silicon layer
whose second-order susceptibility components all vanish
except the single component indicated on each curve,
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TABLE II: Silicon SHG susceptibility components at λ =
765 nm reported by Lüpke et al.22 for oxide layers grown at
550◦ C in steam to a thickness of 1–1.5 nm. Note that the
value of the bulk isotropic term γ is arbitrarily defined to be
100, and the others are scaled with respect to this value.

Bulk Surface
γ = 100 ∂31 = −4.3 + 1.2 i
ζ = −66 − 5 i ∂15 = −29
δ′ = (not accessible) ∂33 = 35 − 9 i
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FIG. 13: (Color online) pp-SHG as a function of silicon thick-
ness. The upper panel shows the data and a curve calcu-
lated from the susceptibility components of Table II. The
lower panel shows the intensity produced by each suscepti-
bility component in isolation. Note that γ and ∂31 (shown
dashed) are degenerate. Lacking any previous measurements,
a value of δ′ = 100 has been assumed for the mixed-wave
term.

which takes the value of Table II. In the vicinity of
d = 80 nm, where the γ curve has a pronounced min-
imum in disagreement with the data, the ζ curve does
not (see the lower panel of Fig. 12). By increasing the
magnitude of ζ by slightly more than a factor of 3 it
is possible to track the data quite well in this region,
as shown in the dashed curve. This suggests that the
value of the bulk anisotropic term is probably greater
than found in Ref. 22. The disagreement with the data
near the minimum at 51 nm is probably inconsequential,
as the signal is not far from the noise level there. How-
ever, the disagreement for d < 20 nm is still considerable
and we hesitate to draw firm conclusions from the com-
puted curve. Nonetheless, the strong modulation of the
pp-SHG data for d = 7 nm shown in Fig. 10 demonstrates
the significant contribution of the bulk anisotropic term
ζ and suggests a value of |ζ/γ| greater than in Table II.

As seen in the upper panel of Fig. 13, the pp-SHG
data also show significant disagreement with the sus-
ceptibilities of Table II. The solid curve was calculated

for 45◦ incidence along a (110) direction, and assumes
δ′ = 0. Again, the data at small silicon layer thickness
(d < 30 nm) differ appreciably from the predicted curve,
which shows no hint of a dip near d = 8 nm. In fact, each
component rises in the same quadratic way for small d, as
they must.12 By 8 nm there begins to be a modest sepa-
ration among the possible contributions, and hence, with
appropriate weighting, it is possible to arrange a mini-
mum in this region. Holding all other susceptibilities at
their values in Table II, and increasing the magnitude
and phase of δ′ until a minimum near 8 nm is obtained
yields curve (b) of Fig. 14 for δ′ = −370+190i. However,
this curve clearly disagrees with the data for d > 35 nm.
Curves (c) and (d) illustrate the sensitivity of the re-
flected second harmonic to variations in the magnitude
of δ′, showing a 15% reduction and a 20% increase.

Alternatively, we can take the value ζ = −120 + 170 i
from the curve of Fig. 12 and seek the value of δ′ that
produces the best agreement. Varying only δ′ gener-
ates curve (e) and a value δ′ = −325 + 100 i, but this
curve misses the minimum at 100 nm. Curve (f) yields
a smaller value of δ′ by effectively halving the value of
∂15 and introducing a 90◦ phase shift, which captures the
deep minimum near 100 nm but appears shifted by about
10 nm in the range from 50–80 nm. Curves (g) and (h)
show attempts to match both minima and maxima in
the data by allowing ζ even greater latitude of variation.
Curve (h) follows the data for d < 80 nm best, but fails
to capture the depth of the minimum at 100 nm.

In short, we have found no set of parameters to de-
scribe the data quantitatively, but find qualitatively bet-
ter agreement in the sp data for |ζ| = 210, a factor of 3
greater than in Ref. 22, and that |δ′/γ| must be at least
0.8 to provide qualitative agreement with the minimum
observed near 8 nm in the pp data. Some of this disagree-
ment is almost certainly due to surface terms arising from
misorientation of the silicon-oxide interfaces, which we do
not model. However, the rotational curves of Fig. 10 sug-
gest that the extent of the extraneous surface contribu-
tions is not so large as to vitiate a qualitative assessment
of the importance of these susceptibility terms.

The Isp(d) data, particularly in the neighborhood of
d = 80 nm (Fig. 12), suggest that ζ is significantly larger
than determined in Ref. 22. In that work, the authors
neglect the depletion field at an oxidized or bare silicon
surface, which arises from trapping of majority carriers at
midgap surface/interface states.34 However, the 60 Ω cm,
P-doped silicon samples of that study would have deple-
tion fields of order volts per micron. Our samples are es-
sentially undoped and should have negligible static fields
along the normal, since dopants present in the original
silicon source wafer diffuse out of the 200-nm Si layer
during the initial flip-bonding and annealing process that
produced the Unibond wafers, and certainly during the
lengthy high-temperature oxidation we perform to thin
the silicon layer. Static fields can significantly perturb
the p-polarized SH signal9,19 and would tend to enhance
the isotropic response. Since our samples lack that en-
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Curve ζ δ′ ∂15

(a) −66 − 5i 0 −29
(b) −370 + 190i
(c) −320 + 160i
(d) −450 + 230i
(e) −120 + 170i −325 + 100i
(f) −120 + 170i −92 + 22i 0.7 + 14i
(g) −175 + 52i −65 + 44i 3.2 + 8.2i
(h) −170 + 240i −220 + 50i

FIG. 14: (Color online) Attempts to fit the Ipp(d) data. The
upper panel shows the curves calculated with the values of
Table II, and different values of δ′. Values not shown in the
table are identical to those of curve (a), and for all curves
γ = 100, ∂31 = −4.3 + 1.2 i, and ∂33 = 35 − 9 i. To show
additional curves, the data are shown shifted down in the
lower portion of the figure. Curves (e) and (f) take the value
of ζ estimated in Fig. 12 and adjust either δ′ or additionally
∂15. Curves (g) and (h) are attempts to fit with even greater
departures for ζ.

hancement, it is reasonable for us to see a comparatively
greater contribution from the bulk anisotropic term.

Many workers have reported time-dependent SH sig-
nals from silicon surfaces covered with thin oxide layers
in air.2,35–37 Heating effects can alter the efficiency with
which a surface generates pp-SHG,2 but this does not
account for all observations. The mechanism proposed
by Mihaychuk and coworkers involves electron transport
through the thin oxide overlayer, combined with trapping
at the free surface mediated by oxygen in the ambient at-
mosphere. The magnitude of the effect diminishes rather
rapidly with the thickness l of the oxide layer, becoming
negligible for l & 10 nm.36 We do not observe this ef-
fect in our samples, which have oxide layers thicker than
170 nm.

VI. CONCLUSIONS

We have developed a method for computing the re-
flected and transmitted harmonic light from a multilayer
structure consisting of parallel layers of nonmagnetic ma-
terials. The calculation handles properly the signifi-
cant variations in the amplitude of the fundamental field
within the nonlinear layer(s) that arises from thin-film
interference, and includes all combinations of fundamen-
tal fields in the generation of the harmonic waves. The
calculation solves for the forward and backward going
fundamental waves in each layer using the standard ma-
trix method using only the linear dielectric constant at
ω. These are used parametrically to compute the induced
bulk and surface nonlinear polarizations at the harmonic
frequency Ω = nω. Augmented 3 × 3 matrices describe
the coupling of the freely propagating waves at Ω across
interfaces, accounting for the surface and bulk nonlin-
ear sources, permitting the computation for the inho-
mogeneous wave equation to proceed formally in much
the same way as the familiar matrix approach to solving
the homogeneous problem. Because, in general, different
susceptibility components have different layer-thickness
(d) dependence, measuring reflected or transmitted har-
monic light as a function of d can allow different contri-
butions to be distinguished.

The method was applied to second- and third-
harmonic generation in thin layers of c-Si surrounded by
SiO2 using ∼60 fs pulses at 800-nm from a Ti:sapphire
laser. The nonlinear optical response of the silicon layers
was described phenomenologically, using the symmetry-
allowed susceptibilities for a (001) surface. At 3ω, bulk
nonlinear polarization is dipole-allowed and the agree-
ment between theory and experiment is excellent (see
Fig. 9). The results demonstrate clearly that the domi-
nant signal arises in the bulk. The second-harmonic case
is complicated by the greater number of nonvanishing
terms that must be considered. Dipole SHG is forbidden
in the bulk, but electric quadrupole and magnetic dipole
terms may be parameterized by three susceptibility com-
ponents, one of which (δ′) is studied here for the first
time. For an ideal (001) surface there are three surface
susceptibility components that contribute to the isotropic
SH response, but for a miscut surface additional terms
with rotational anisotropy emerge, complicating the anal-
ysis.

Although quantitative agreement of Isp(d) and Ipp(d)
was not obtained, certain features of these curves provide
insights into the relative strength of the various suscep-
tibility components. The lack of a deep minimum at
d = 80 nm suggests that the signal from the isotropic
and anisotropic terms are comparable and yields a value
of |ζ/γ| that is significantly larger than Ref. 22. The
Ipp(d) data exhibit an unexpected, puzzling, and yet con-
sistent and reproducible minimum at 8 nm, which is on
a length scale appreciably shorter than any other natural
length scale in the problem. This feature suggests an ac-
cidental cancelation among the various terms. Attempts



12

to fit the Ipp(d) data were unsuccessful, but computed
curves suggest that the value of the nonlinear suscepti-
bility δ′, which mixes the forward and backward funda-
mental waves, is comparable to the bulk isotropic suscep-
tibility γ.

Appendix

We use a coordinate system in which the outward nor-
mal of the first layer is along the positive z direction, with
the upper surface of the first layer at z = 0. As illustrated
in Fig. 2, the incident fundamental beam at frequency ω
propagates towards the interface from positive z and is
incident at angle θ with respect to the normal.

We treat separately the case of s- and p-polarized fun-
damental waves. Consider first an s-polarized (TE) plane
wave incident at angle θ in vacuum on the multilayer
structure, as shown in Fig. 2. Inside layer j of (complex)
index of refraction n(j) =

√
ε(j)(ω), the electric and mag-

netic fields of this forward-going wave may be expressed
as

e−(j)s = e−(j)s e
ik−

(j)
·r−iωt

ŝ + c.c.

h−(j)s = −n(j)e
−
(j)s e

ik−
(j)
·r−iωt p̂−(j) + c.c. ,

, (17)

where the wave vector is given by

k−(j) = κκ̂− w(j)ẑ ,

κ = ω̃ sin θ ,

ω̃ = ω/c ,

w(j) =
√
ε(j)ω̃2 − κ2 ,

(18)

and the unit vector in the direction of the magnetic field
h−(j)s is

p̂−(j) =
κẑ + w(j)κ̂

nω̃
. (19)

Lowercase symbols are used for waves at the fundamen-
tal frequency ω, and uppercase symbols will be used for
waves at the harmonic frequency Ω = nω. The in-plane
component of the wave vector, κ, and the vacuum wave
vector, ω̃, are both real. When n(j) is complex, the nor-
mal component of the wave vector, w(j), is complex as
well, and we take the root with positive real and imag-
inary components. Recall that we assume nonmagnetic
layers (µ = 1).

Reflections at the boundaries between layers produce
a backward-going wave of the form

e+
(j)s = e+

(j)se
ik+

(j)
·r−iωt

ŝ + c.c. ,

h+
(j)s = −n(j)e

+
(j)se

ik+
(j)
·r−iωt

p̂+
(j) + c.c. ,

k+
(j) = κκ̂+ w(j)ẑ ,

p̂+
(j) =

κẑ− w(j)κ̂

nω̃
.

(20)

At the interface between layers j and j + 1, boundary
conditions for the parallel component of the electric field
and the magnetic field produce two equations linking the
waves in the two layers. In the absence of sources, the
parallel components of both electric and magnetic fields
are continuous. From continuity of the electric field we
obtain

e+
(j)s + e−(j)s = e+

(j+1),s + e−(j+1),s , (21)

while continuity of the parallel component of the mag-
netic field gives

w(j)

ω̃
e−(j)s −

w(j)

ω̃
e+

(j)s =
w(j+1)

ω̃
e−(j+1),s −

w(j+1)

ω̃
e+

(j+1),s .

(22)
Equations (21) and (22) give the forward- and

backward-going fields in the jth layer in terms of the
fields in the (j + 1)st layer, the solution of which can
be conveniently expressed in matrix form. If we define
the transmission t(j) and reflectivity r(j) of the interface
between layers j and j + 1 by

t(j),s ≡
2w(j)

w(j) + w(j+1)
,

r(j),s ≡
w(j) − w(j+1)

w(j) + w(j+1)
,

(23)

then the solution is
(
e+

(j)s

e−(j)s

)
=

1

t(j),s

(
1 r(j),s

r(j),s 1

)(
e+

(j+1),s

e−(j+1),s

)
. (24)

This equation defines the interface matrix m(j,j+1)s be-
tween the two layers.

Within layer j the fields accumulate phase proportional
to the normal component of the wave vector, ±w(j). The
fields at the front surface (z + d) and back surface (z) of
layer j of thickness d are related by

(
e+

(j)s(z + d)

e−(j)s(z + d)

)
=

(
eiw(j)d 0

0 e−iw(j)d

)(
e+

(j+1),s(z)

e−(j+1),s(z)

)
,

(25)
which defines the layer matrix m(j).

Since there is no fundamental beam incident from the
back of the multilayer structure, the reflectivity and
transmission of the structure, as well as the amplitude
of both forward and backward waves in each layer may
be obtained by requiring that only a forward-going wave
emerge from the final layer. Multiplying in order the
matrices for each successive interface and layer produces
a matrix characterizing the entire structure of L layers,
which gives the incident and reflected fields in terms of
the transmitted field. Dividing through by the incident
field produces expressions for the reflected and transmit-
ted amplitudes,

(
rs
1

)
=

(
a11 a12

a21 a22

)(
0
ts

)
, (26)
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where the matrix for the entire multilayer structure is
given by

(
a11 a12

a21 a22

)
= m0,1 m1 m1,2 · · ·mL mL,L+1 . (27)

Solving Eq. (26) for the s-polarized reflection and trans-
mission gives

ts = 1/a22 ,

rs = a12/a22 .
(28)

The strength of forward and backward waves at any point
in the multilayer can then be found from the transmitted
field by multiplication by the appropriate combination of
matrices.

The p-polarized (TM) case is closely analogous. The
electric and magnetic fields of the fundamental waves are

e±(j) = e±(j)p e
ik±

(j)
·r−iωt

p̂±(j) + c.c. ,

h±(j) = n(j)e
±
(j)p e

ik±
(j)
·r−iωt

ŝ + c.c. .
(29)

The interface matrix defined in Eq. (24) is unchanged,
provided that the expressions for the reflectivity and
transmission in Eq. (23) are replaced by

t(j)p ≡
2n(j)nj+1w(j)

εj+1w(j) + ε(j)wj+1
,

r(j)p ≡
εj+1w(j) − ε(j)wj+1

εj+1w(j) + ε(j)wj+1
.

(30)

A. Nonlinear Sources

Within layer j the forward and backward waves
propagating with wave vectors given by Eq. (18) and
Eq. (20) generate source polarizations with wave vectors
(n−m)k−(j) +mk+

(j) for m ∈ {0, 1, . . . , n}. Here m rep-

resents the number of factors of the (weaker) backward-
going wave. All these have identical components in the
plane of the surface, which we define to be

K = nκκ̂ , (31)

but differ in the z-component of the wave vector, qm(j),

defined in Eq. (7).
In parallel with the discussion of the solution for the

fundamental waves, we define

Ω̃ =
Ω

c
=
nω

c
,

W(j) =
√

Ω̃2ε(j)(Ω)−K2 ,

P̂±(j) =
Kẑ∓W(j)κ̂

N(j)Ω̃
,

(32)

where Ω̃ is the magnitude of the vacuum wave vector
at the harmonic frequency and N(j) =

√
ε(j)(Ω) is the

(complex) index of refraction at the harmonic frequency.
Then the source polarization arising from any one of
these (n+ 1) combinations of fields in the jth layer takes
the form

PΩ,m
(j) (r, t) = Pm

(j) e
iqm(j)z+iKx−iΩt + c.c. . (33)

This source polarization generates the harmonic wave,
which solves the (inhomogeneous) wave equation

∇(∇·Em
(j))−∇2Em

(j)− Ω̃2N2Em
(j) = 4πΩ̃2Pm

(j)e
iqm(j)z+iKx .

(34)
Its solution consists of two parts: the freely propagating
wave at frequency Ω, which solves the homogeneous equa-
tion with the right hand side set to zero, and the partic-
ular solution to the inhomogeneous equation. Boundary
conditions at the interfaces require that all waves have
the same in-plane component of the wave vector, Kκ̂.
The freely propagating waves therefore take the form

E±(j)s = E±(j)s e
iK±

(j)
·r−iΩt

ŝ + c.c. ,

E±(j)p = E±(j)p e
iK±

(j)
·r−iΩt

P̂± + c.c. ,

K±(j) = Kκ̂±W(j)ẑ .

(35)

We look for a source wave solution of the form

Em
(j) = Am

(j) e
iKx+iqm(j)z−iΩt + c.c. . (36)

Substituting this expression into Eq. (34) gives

Am(j)s = C(j)N
2
(j)Ω̃

2Pm(j)s ,

Am(j)κ = C(j)

[
W 2

(j)P
m
(j)κ − qm(j)KPm(j)z

]
,

Am(j)z = C(j)

{[
N2

(j)Ω̃
2 − (qm(j))

2
]
Pm(j)z − qm(j)KPm(j)κ

}
,

C(j) ≡ −
4π

N2
(j)

[
W 2

(j) − (qm(j))
2
] .

(37)

Equations (35)–(37) specify the source waves arising from
the nonlinear polarization induced by the fundamental
waves travelling both forward and backward inside non-
linear layer j. Boundary conditions at the interfaces be-
tween layers for the parallel components of the electric
and magnetic fields at Ω determine the freely propagating
waves at Ω that are seen in reflection and transmission.

B. Nonlinear Interface Matrices

The boundary conditions at the interface between layer
j and layer j + 1, both of which may have surface non-
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linear source terms, are then38

H(j)κ −H(j+1)κ = +4πi Ω̃ [Π(j)s + Π(j+1)s] , (38)

H(j)s −H(j+1)s = −4πi Ω̃ [Π(j)κ + Π(j+1)κ] , (39)

E(j)κ −E(j+1)κ = −4π

[
1

ε(j)
(κ̂ · ∇)Π(j)z+

1

ε(j+1)
(κ̂ · ∇)Π(j+1)z

] , (40)

E(j)s −E(j+1)s = −4π

[
1

ε(j)
(ŝ · ∇)Π(j)z+

1

ε(j+1)
(ŝ · ∇)Π(j+1)z

]
,

(41)

where the dielectric function is to be evaluated at the
harmonic frequency Ω.

These expressions allow the harmonic fields in the jth
layer to be found from the fields in the (j + 1)st layer,
the source waves Am

(j) in both layers, and the surface

polarizations Π on either side of the interface. For s-
polarized nth harmonic Eq. (41) gives

E+
(j)s+E−(j)s = E+

(j+1),s+E−(j+1),s+

n∑

m=0

(Am(j+1),s−Am(j)s) ,

(42)
since the surface polarization terms do not vary in the ŝ
direction, while Eq. (38) yields

W(j)

Ω̃
(E−(j)s −E+

(j)s) =
W(j+1)

Ω̃
(E−(j+1)s −E+

(j+1)s)

+
1

Ω̃

n∑

m=0

(Am(j)sq
m
(j) −Am(j+1)sq

m
(j+1))

+ 4πiΩ̃(Π(j)s + Π(j+1)s) .

(43)

Solving for the free waves in layer j in terms of the
waves in layer j + 1 and the source terms gives
(
E+

(j)s

E−(j)s

)
=

1

t(j)

(
1 r(j)

r(j) 1

)(
E+

(j+1)s

E−(j+1)s

)
+

(
S+

(j)s

S−(j)s

)
,

(44)
where the reflection and transmission coefficients are de-
fined by

t(j)s =
2W(j)

W(j) +W(j+1)
,

r(j)s =
W(j) −W(j+1)

W(j) +W(j+1)
,

(45)

and the source terms are given by

S±(j)s =
1

2

n∑

m=0

[
Am(j+1)s

(
1±

qm(j+1)

W(j)

)
−Am(j)s

(
1±

qm(j)

W(j)

)]

∓ 2πiΩ̃2

W(j)
(Π(j)s + Π(j+1)s) .

(46)

Equation (44) completely specifies the fields in layer
j, as was desired, but the inhomogeneous term makes
it awkward to express compactly the progression of
forward- and backward-going waves from deepest to
frontmost interface. This problem may be overcome by
defining 3× 3 matrices for the interfaces, M(j)j+1, by



E+

(j)s

E−(j)s
1


 =




1
t(j)s

r(j)s
t(j)s

S+
(j)s

r(j)s
t(j)s

1
t(j)s

S−(j)s
0 0 1






E+

(j+1)

E−(j+1)

1


 , (47)

and for the layers, M(j), by



E+

(j)s(z + d)

E−(j)s(z + d)

1


 =



eiW(j)d 0 0

0 e−iW(j)d 0
0 0 1





E+

(j+1)s(z)

E−(j+1)s(z)

1


 ,

(48)
so that the entire structure can be described by the prod-
uct matrix

M = M0,1 M1 M1,2 · · · ML ML,L+1 =



b11 b12 b13

b21 b22 b23

0 0 1


 .

(49)

The amplitude of the reflected and transmitted second-
harmonic waves may now be determined from the matrix
M . Assuming that there are no waves incident at the
harmonic frequency Ω, we have



ER

0
1


 =



b11 b12 b13

b21 b22 b23

0 0 1






0
ET

1


 , (50)

from which we deduce the transmitted and reflected har-
monic amplitudes,

ET = −b23

b22
,

ER = b13 + b12E
T
s = b13 −

b23

b22
.

(51)

The p-polarized case may be handled in a similar way.
The boundary conditions of Eqs. (40) and (39) yield the
equations

W(j)

N(j)Ω̃
(E−(j)p −E+

(j)p) =
W(j+1)

N(j+1)Ω̃
(E−(j+1)p −E+

(j+1)p)

+

n∑

m=0

(Am(j+1),κ −Am(j)κ)

− 4πiK

(
Π(j)z

ε(j)
+

Π(j+1),z

ε(j+1)

)

(52)
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and

N(j)(E
−
(j)p +E+

(j)p) = Nj+1(E−(j+1)p +E+
(j+1)p)

+
1

Ω̃

n∑

m=0

{
K(Am(j+1)z − Am(j)z)− [Am(j+1)κq

m
(j+1)−

Am(j)κq
m
(j)]

}
− 4πiΩ̃(Π(j)κ + Π(j+1)κ) ,

(53)

for the parallel components of the electric field and mag-
netic field, respectively. These equations may be summa-
rized by the matrix equation



E+

(j)p

E−(j)p
1


 =




1/t(j)p r(j)/t(j)p S+
(j)p

r(j)p/t(j)p 1/t(j)p S−(j)p
0 0 1





E+

(j+1)p

E−(j+1)p

1


 ,

(54)
with the reflection and transmission coefficients

t(j)p ≡
2N(j)Nj+1W(j)

εj+1W(j) + ε(j)Wj+1

r(j)p ≡
εj+1W(j) − ε(j)Wj+1

εj+1W(j) + ε(j)Wj+1
,

(55)

and the nonlinear sources given by

S±(j)p =
1

2N(j)Ω̃

n∑

m=0

[
K(Am(j+1),z −Am(j)z)

−Am(j+1),κ

(
qmj+1 ±

N2
(j)Ω̃

2

W(j)

)

+Am(j)κ

(
qm(j) ±

N2
(j)Ω̃

2

W(j)

)]

+ 2πi

[
±N(j)Ω̃K

W(j)

(
Π(j)z

ε(j)
+

Π(j+1)z

εj+1

)

− Ω̃

N(j)
(Π(j)κ + Π(j+1)κ)

]
.

(56)

As before, the reflected and transmitted fields are given
by Eqs. (49) and (51).
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