Fukushima: What We All Should Know about Radiation

Peter N. Saeta, Harvey Mudd College Physics, 25 March 2011

Outline

- Radioactivity: what is it, what causes it, and what's a half life?
- How does ionizing radiation interact with biological tissue?
- How does a reactor work and what are typical levels of radioactivity?
- What happened at Three Mile Island, Chernobyl, and Fukushima?
- Which kills more people, cars, planes, coal, oil, wind, or nuclear power?

What is radioactivity?

- Emission of one or more energetic particles from a nucleus
 - alpha (α) particle: helium nucleus
 - beta (β) particle: electron or positron
 - gamma (γ): high-energy light
 - neutron (n)
- Energetic enough to break atomic bonds (ionize)

What causes radioactivity?

- Unstable nuclei can lower their energy by falling apart
- A (meta)stable nucleus absorbs a neutron and becomes unstable
- C¹⁴ is made when cosmic rays (very energetic particles) collide with atmospheric nitrogen
 - In a typical human, 3000 carbon atoms
 <u>disintegrate</u> *per second*

You are radioactive!

What's a half life?

- Iodine-131 (I¹³¹) has a half-life of 8 days
- If I have 1024 I¹³¹ nuclei in a jar, 8 days later I will have about 512
- After 16 days I will have about 256
- After 80 days, only 1 is left
 - Japanese near Fukushima should ingest nonradioactive potassium iodide to "saturate" their thyroid glands so radioactive iodine won't accumulate there

Quantities of radiation

- 1 gray = 1 joule of x-rays, γ-rays, or electrons (β) absorbed in 1 kilogram of tissue
 - raises temperature by 0.0004°F
- neutrons (n) are 10 times more damaging
- α particles are 20 times more damaging
- 1 sievert = does equivalent of 1 gray of xrays
 - 1 Sv = 100 rem

How do radioactive particles interact with biological tissue?

- Bonds break
- Reactive radicals (ions) form; can attack DNA or other molecules
- In low dosage, cells repair damage
- Higher dosage leads to cell death or possibly cancer
- Very high dosage disrupts bone marrow
- Extremely high dosage incapacitates and leads to death within hours (> 8 Sv)

Important number 3 Sv = LD50

Common daily dosages

- 1 banana (0.1 μSv)
- dental x-ray (5 μSv)
- a day in Colorado (1.2 μSv > normal)

extra dose per day in town near Fukushima (~4 µSv)

- a normal day (10 μ Sv)
- flight NY to LA (40 μ Sv)

http://xkcd.com/radiation/

Common annual dosages

- potassium in body (390 μ Sv)
- EPA limit to public (1 mSv)
 maximum external dose from Three Mile Island (1 mSv)
- mammogram (3 mSv)
- normal yearly dose (3.65 mSv)
- chest CT scan (5.8 mSv)

Linear model

Radiation Dose (Sv)

Linear fit, 0 - 1.5 Sv

Linear-quadratic fit, 0 - 1.5 Sv

2

Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII – Phase 2 (2006) BEIR VII

http://www.nap.edu/

4.5%

Three Mile Island (1979)

- Pumps supplying cooling water failed
- Valve to backup pump was accidentally left closed
- Control rods were inserted, but decaying fission fragments continued heating
- Operator turned off
 emergency core cooling
 because he thought the
 reactor was full of water

- 1/3 of core melted
- Some radioactive steam vented; expected cancers from leakage: 1

Chernobyl (1986)

- Explosion and fire
- Dozens of firefighters exposed to several sieverts; die of radiation sickness
- IAEA estimates 0.6 MSv total exposure P 10,000–24,000
 cancers worldwide among 100 million people exposed
- Normal cancers: 20,000,000
- Increased thyroid cancer in Ukraine, especially among children (~4×)

Howe et al., Journal of the National Cancer Institute, 5 July 2006; Frank von Hippel, New York Times, 23 March 2011

0.1 mSv >1 mSv >10 mSv

Thermal neutrons

 U²³⁸ only absorbs fast neutrons

 U²³⁵ and Pu²³⁹ absorb slow (thermal) neutrons

NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM

- When U²³⁵ absorbs a neutron and then fissions, ~2 neutrons come out
- If 1 of those is absorbed by another U²³⁵ there is a sustained chain reaction

How does a reactor work?

- Water moderates
 neutrons (slows
 them down)
- Boils to produce steam to run turbine
- Control rods adjust neutron flux
- After shutdown, need cooling

Spent fuel rods

- Stored in water to cool and suppress radioactivity
- Transfer takes place to pool above top of reactor vessel
- Stored for years as fission fragments decay
- $Zr + 2 H_2O \rightarrow ZrO_2 + 2 H_2$ + heat

Can a reactor explode like a nuclear bomb?

- No too many of the neutrons are absorbed by U²³⁸ to permit reaction to run away explosively
- A uranium bomb requires enrichment of U²³⁵ fraction to ~95%

Dangerous species

	I131	8.14 days	those near Fukushima should take iodine salts
	Sr ⁹⁰	29.9 years	like calcium
[— Cs ¹³⁷	30.1 years	like potassium
		Independent Independent 1 H 10079 Hinium 1 H 10079 Hinium 11 121 12 Na 19 Ca 19 Ca 19 Ca 19 Ca 19 Ca 10 Ca 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Observed radiation levels

- 3/15, Main gate, Fukushima Daiichi plant: 11.9 mSv/hr @ 9:00, down to 0.6 mSv/hr @ 15:30
- 3/17, 0.338 mSv/hr @ 5:00
- Los Angeles Times (3/18): Xe¹³³ detected in Sacramento, according to the EPA. Dose: one-millionth normal background.
- 3/19, Tokyo tap water: 1.5 becquerels/kg of I¹³¹. Tolerable limit: 300 becquerels/kg.
- 3/23, *Bulletin of the Atomic* Scientists: Tokyo tap water: 210 becquerels/kg of I¹³¹, unsafe for babies
- 3/24, Bulletin of the Atomic Scientists: workers stepped in highly radioactive water; received beta ray burns; dose of ~0.18 Sv or more.

Risks

- Chernobyl: 10,000 24,000 cancer deaths
- Coal: 10,000 deaths/year in the United States
- Traffic accidents: 24,474 deaths in US in 2009; 2,011,000 injured; 1.13 fatalities per 100 million miles traveled
- Air is 12x safer than train *per passenger mile*, and 62x safer than car; air is 3x more dangerous than car and 30x more dangerous than bus *per passenger trip*

Prudence

- Dry cask storage (NRC Commissioner Gregory Jaczko; Union of Concerned Scientists)
- Filtered ventilation of outer containment
- More separation between the Nuclear Regulatory Commission and industry

More information

- <u>http://www.ne.ncsu.edu/</u>
- <u>http://www.nytimes.com/</u>
- <u>http://www.jaif.or.jp/english/</u>
- <u>http://armscontrolwonk.com/</u>
- <u>http://www.thebulletin.org</u>/

• *Physics and Technology for Future Presidents*, Richard A. Muller (Princeton, 2010)

Radiation effects

Dose (Gy)	Molecular Processes	Cultured Human Cells	Humans
0.001		Yearly background dose	
0.01	No measurable effects	No measurable effects	Possible increased risk of childhood cancer after in utero irradiation
0.1	No measurable effects	Induction of mutations and malignant transformation	Chromosome aberrations in peripheral blood lymphocytes
0.5	Decrease in nuclear phosphorylation in some cells	Cytogenetic changes	Interphase death in peripheral lymphocytes; increased cancer risk
1	Rate of DNA synthesis shows transient reduction	Growth delay, but greater than 95% survival in cultured cells	Slight acute illness; 100% survival; increased long term cancer risk
5		10% survival	Extreme acute illness; ~50% survival
10	Transfer of RNA to cytoplasm transiently interrupted	1% survival	100% lethal
100	Energy metabolism decreased; DNA repair capacity unaffected	Immediate (interphase) death in cultured cells	CNS and cardiovascular system collapse; immediate death
1000	Membrane function failure; end of coherent metabolism	Instantaneous death	Probably instantaneous death

North Carolina State University Dept. of Nuclear Engineering, Seminar, 23 March 2011