Recitation
Wednesday, 4 December 2013

Physics 111

While you are working on your projects, it is time to work practice problems
in class to help you review the material of the course. There are many more, of
course, in the text by Helliwell and Sahakian.

Problem 1 - Marion 8-16 A particle executes elliptical (but almost circular) motion about a force cen-
ter. At some point in the orbit a tangential impulse is applied to the particle, changing the velocity from
v to v+ dv. Show that the resulting relative change in the major and minor axes of the orbit is twice the
relative change in the velocity and that the axes are increased if 6v > 0.

Problem 2 - Marion 7-12 A particle of mass m rests on a smooth plane. The plane is raised to an
inclination angle @ at constant rate @ (0 = 0 at ¢ = 0), causing the particle to move down the plane.
Determine the motion of the particle.

Problem 3 Find the force law for a central-force field that allows a particle to move in a logarithmic
spiral orbit given by r = ke®?, where k and a are constants.

Problem 4 - Marion 7-20 A circular hoop is suspended in a horizontal plane by three strings, each
of length [, which are attached symmetrically to the hoop and are connected to fixed points lying in a
plane above the hoop. At equilibrium, each string is vertical. Show that the frequency of small rotational
oscillations about the vertical through the center of the hoop is the same as that for a simple pendulum
of length /.

Problem 5 - Marion 11-15 If a physical pendulum has the same period of oscillation when pivoted
about either of two points of unequal distances from the center of mass, show that the length of the
simple pendulum with the same period is equal to the separation of the pivot points. Such a physical
pendulum, called Kater’s reversible pendulum, at one time provided the most accurate way (to about 1
part in 10%) to measure the acceleration of gravity. What is the advantage of Kater’s pendulum?

Problem 6 - O Holy Sphere A homogeneous sphere S has mass M and radius R. Note: do not use
decimals in this problem. Use fractions only.
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(a) Show that the moment of inertia of the sphere about its center is EM R?.

(b) What is the inertia tensor of the sphere, I; j, with respect to its center?

(c) Liposuction is performed on the sphere to remove a small sphere of radius
R/2 extending from the center of the sphere, O, to a point on its surface, as
illustrated in the figure. After removing the small sphere, what is the distance
a between O and the center of mass?

(d) Prove Steiner’s parallel axis theorem, which is

Jij=Tij+ M(?6;; = ;1))

where [;; is the inertia tensor with respect to the center of mass, r; is the
parallel displacement of the origin from the center of mass, M is the mass of
the body, and J;; is the inertia tensor with respect to the displaced origin.

(e) Compute the inertia tensor J;; of the modified sphere about O, taking the position of the center of
the spherical cavity with respect to O to ber = gi. Note: if A+ B=C, then A=C - B.

(f) S is placed on a smooth table and displaced slightly from its equilibrium position. It rolls
without slipping. Find the period of small oscillations. Justify any approximations you make.
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Problem 7 — An Alaskan Nightmare

The onset of “winter” weather reminds me of a “popular” game
played in Alaska on cold winter days when bundled-up little kids are
plentiful. I'm not sure but I think Isabel Bush was telling me about
it when we were killing time in Kenya. Anyway, the big kids pack to-
gether a large perfect hemisphere of snow and ice, its bottom sur-
face perfectly smooth and plane, its upper surface smooth, slick, and
spherical with radius R. The hemisphere is placed on a smooth, hor-
izontal patch of lake ice and a slicked-up little kid (B) is positioned
exactly at the top of the hemisphere.

[Okay, for those of you who are less cruel, you can imagine a bowling ball up there.] The ball/kid B (of
mass m) is released from rest from the top of the hemisphere of mass M (also initially at rest). Mea-
suring the angular position of B from vertically up with angle 8, its radial distance r, and the horizontal
displacement of the hemisphere with X, as illustrated in the figure.

(a) Write down the equations of transformation for the position of B (neglect said object’s spatial extent
here and henceforth).

Physics 111 2oflf) Peter N. Saeta




(b) Work out an expression for the kinetic energy of B.
(c) Compute the Lagrangian of the system of B and hemisphere.

(d) Using A as the Lagrange undetermined multiplier for the radial equation, find the three Euler-
Lagrange equations.

(e) Simplify the Euler-Lagrange equations under the assumption that M is effectively infinite. Show
in this case that B leaves the hemisphere at 6y = 48.2° (but please leave your answer in a more
mathematical form).

(f) If the mass ratio, u = M/m, is finite, will the angle at which B leaves the hemisphere be greater than,
less than, or equal to 8y? Explain your reasoning briefly.

(g) Solve numerically for the angle at which B leaves the surface if y = 5.

Problem 8 — Lagrange Points The 12 November 2010 edition of Robert Park’s weekly column “What’s
New” discusses a problem that one had reason to hope would be remedied shortly after the Bush admin-
istration left office:

There are two obvious places to locate space observatories. They were identified by the
great French-Italian mathematician Joseph Lagrange 237 years ago, long before anyone even
imagined space observatories. The Lagrange points mark positions where the combined grav-
itational pull of the two large masses (Earth and Sun) provides precisely the centripetal force
required to rotate a relatively small mass (the observatory) with them. There are five Lagrange
points in the Earth-Sun system. The first two are the important ones. L is about [distance
withheld] from Earth on a line to the Sun. It is the perfect position from which to monitor the
Sun in one direction, and the full illuminated Earth in the other. It is thus ideally situated to
monitor changes in Earth’s albedo. Americans paid more than $100 million for an observatory
at L, now called dscovr, the deep space climate observatory. For unexplained reasons it is
sitting idle in a warehouse in Greenbelt, MD. The L, point is [also withheld] from Earth on a
line directly away from the Sun. It is patiently waiting for the James Webb space telescopeE]

In this problem, you will explore the Lagrange points of the Earth-Sun system under the following sim-
plifying assumptions:

1. The Earth’s orbit is a perfect circle.

2. The influence of the Moon and of all other bodies of the solar system may be neglected.

Let m; be the solar mass, 11, be the mass of the Earth, M = m; + m,, and p = my/ M. Furthermore, call
the Earth-Sun separation D, measure distances in units of D, and measure time in units of years.

(a) Explain qualitatively why it makes sense that there are two points as described by Park where a
satellite of negligible mass would orbit the center of mass of the Sun-Earth system with a period of
one year.

1 At present, DSCOVR is due to launch in January, 2014, and the James Webb space telescope launch is planned for 2018.
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(b) Where along the line joining the Sun and Earth should one look for a third Lagrange point? A qual-
itative answer will suffice.

(c) It is convenient to analyze this problem in a frame rotating once per year about the center of mass
of the Sun-Earth system. This frame is not inertial, so you must include appropriate pseudo forces.
We will use a rotating Cartesian coordinate system centered on the center of mass, such that the
Earth is along the positive x axis and the y axis lies in the plane of the orbit. [For the lawyers among
you—and we know who you are—the y axis is perpendicular to the x axis and to L, the angular
momentum of the Sun-Earth system in an inertial frame.] Show that the equations of motion of a
satellite of mass m3 <« m, are

, . Ou , . Ou

x—2§2y=—a and y+2§2x=—a—y
where Q is the angular velocity of the rotating frame with respect to an inertial frame and u is an
effective potential per unit mass, given by

0? my m
ux,y) = ——(x? +y2) - G(—l + —2)
2 31 T32
(d) Find (but don't yet solve) the equations yielding the positions (x, y) of Lagrange points. Take M = 1.
Hint: A particle placed at a Lagrange point remains at rest in the rotating frame. Your expressions
should involve only x, y, p, Q, 131, 32, and numerical factors. Note that a circular orbit satisfies
Q2D =GM/D?, soin ourunitswithD=1and M =1, G = Q2.
(e) There are two Lagrange points, Ly and Ls, that do not lie on the x axis. Show that each makes
an equilateral triangle with the Sun and Earth. Hint: Look at the y equation from the previous
question.

(f) Which, if any, of the three Lagrange points along the x axis is stable with respect to small perturba-
tions in the x direction, provided you ignore the Coriolis pseudo force?

(g) Numerically solve (using Mathematica) for the positions of the five Lagrange points in the (dimen-
sionless) units we are using, assuming that p = 3 x 1075, You may wish to use NSolve and/or Find-
Root.

(h) Are the Lagrange points along the Sun-Earth axis minima, maxima, or saddle points?
(i) How far are L; and L, from Earth, in kilometers? The Earth is 1.496 x 108 km from the Sun.

(j) Extra credit: Investigate the stability of the L, point for small perturbations in the xy plane, when
you do include the Coriolis terms. A numerical calculation using the value of p given above will
suffice.

Physics 111 4of|q Peter N. Saeta




Problem 9 For this problem, use no numerical values other than those provided herein. The accel-
eration due to gravity at the surface of the Earth is g = 9.8000m/s?; the Moon takes T = 27.300days to
orbit the Earth. Light takes . = 1.2600s to travel from the surface of the Earth to the surface of the Moon
along a radial line, and travels at ¢ = 3.0000 x 108 m/s. Assume that the Moon’s mass is exactly % times
the Earth mass and that its radius is exactly iRE . [Yes, I know these values are not quite right; deal with
it! They are exactly right for purposes of this problem.]

Figure 1: The International Space Station

(a) Compute the radius of the Earth, Rg.

(b) The International Space Station (ISS) orbits the Earth at a mean altitude of & = 340km. For pur-
poses of this problem, we will assume that its orbit is circular. Compute the period of the ISS’s
orbit, and the velocity of the station (with respect to the Earth).

Figure 2: Oops!

(c) You are on a spacewalk working to assemble some backup solar panels on the ISS when something
goes terribly wrong and you become untethered. By the time you struggle to correct the situation,
you discover that you are 100 m from the ISS and following the ISS in the same circular orbit. Fortu-
nately, you have still in your hand one of those fancy $50,000 gold-plated wrenches NASA provides.
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Its mass is m = 0.5kg, but yours (including your extensive space suit and breathing apparatus) is
100kg. You also have a calculator and a 2-hour oxygen supply. To get back to the ISS, you decide to
throw the wrench. Should you throw the wrench towards the station or away from it to get back in
the least time? Explain carefully.

(d) Assuming that you can throw the wrench at up to 10m/s with respect to you and that you throw it
in the direction you picked to get back most expeditiously, how fast should you throw it to arrive at
the station in 91 minutes?
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