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Einstein was born and raised in southern Ger-
many. The family moved to Italy when he was
a teenager, and he attended school there and in
Switzerland. He did his advanced studies in physics
at the Zurich Polytechnic, after which he was able
to land a job at the Swiss patent office in Berne.

While working as a patent office clerk, in 1905
Einstein published five seminal papers: Two of
them presented special relativity, one showed that
light consists of particle-like “quanta”, and two
were on the existence and size of molecules. The
revolutionary ideas presented in this “annus mirabilis” were slow to be generally
accepted, but his paper on light quanta led to the Nobel Prize in 1921.

Finally becoming a professor, Einstein worked in Zurich and Prague, and
later in Berlin, where in 1915 he published the general theory of relativity. When
his prediction that light bends around the Sun was observationally confirmed in
1919, he because famous worldwide. Throughout all this time he displayed a
penetrating physical intuition, seeming to see directly into the heart of nature.

Leaving Germany for good in 1933, Einstein became a founding professor
at the Institute for Advanced Study in Princeton, New Jersey, where he worked
until the end of his life. He spent his time working on a “unified field theory”
and in trying to show that the theory of quantum mechanics is incomplete. He
was unsuccessful at both of these enterprises; it was the enormous success of
quantum mechanics, which (ironically) he had helped to invent in his early work
on light quanta but could never fully accept, that made much of his later work
fruitless. Nevertheless, he is universally recognized as the greatest physicist of
the twentieth century.
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Chapter 2

Relativity

In this chapter, we extend our review of mechanics to include Einstein’s
special theory of relativity. We will see that our previous Newtonian
framework is a useful description of the mechanical world only when speeds
are much less than that of light. We also use this chapter to introduce index
notation and general technical tools that will help us throughout the rest of
the book. Then in the following chapter we will show how relativity provides
insights for an entirely different formulation of mechanics — the so-called
variational principle.

2.1 Foundations

2.1.1 The Postulates

The most beautiful concepts in physics are often the simplest ones as well.
In fact, the beautiful, revolutionary insights of special relativity are based on
just two simple postulates:

1. The principle of relativity: The fundamental laws of physics are
valid in all inertial frames of reference.

We already introduced this principle in Chapter 1: it applies equally
well to both newtonian and relativistic physics. There is also a second
rather frugal, clean postulate inspired by electromagnetism: combined
with the first, it leads to astounding conclusions that stretch one’s
imagination and intuition to the limit.
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CHAPTER 2. RELATIVITY

2. The universal speed of light: The speed of light is the same in all
inertial frames.

The second postulate follows from the assertion that Maxwell’s equations of
electromagnetism are valid in all inertial frames. We know that Maxwell’s
equations lead to the wave equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2

∂2φ

∂t2
= 0 (2.1)

for the electric potential φ(t, x, y, z) in vacuum, where c is the speed of light;
this is in fact the wave equation for light. A convenient solution to this
equation is given by the plane wave

φ = φ0 cos(k (x− c t)) (2.2)

where φ0 is the amplitude and k is the wave number. Since (2.1) follows
directly from a fundamental law of physics, c is a fundamental physical scale
in Nature. Let us track the position of a particular wavefront in this plane
wave. Take one of the crests φ = φ0 with x − c t = 0; the wavefront then
evolves according to x(t) = c t from the point of view of an observer at rest in
frame O. Now consider a different inertial frame O′, moving in the positive
x direction according to observers in O, as shown in Figure 2.1, the exact
same reference frames we introduced in Chapter 1. According to the second
postulate, the same wavefront would be seen by O′ as moving with the same
speed c along x′: x′(t′) = c t′.

Panic ensues when we put these statements together with the Galilean
transformation x = x′ + V t of equation (1.1); this gives

c t = c t′ + V t = c t+ V t (2.3)

since t = t′ in (1.1). This can be true only if the relative frame velocity V is
zero!

To focus on the problem at hand, let us rephrase things in a slightly
more general context. Say observer O is tracking a particle along a general
trajectory x(t). The same particle is seen by O′ to evolve along x′(t′). A
Galilean transformation tells us that x(t) = x′(t′) + V t′ . Taking the time
derivative of both sides of this equation, we get the usual velocity addition
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FIG 2.1 : Inertial frames O and O′

rule (1.3)

d

dt
=

d

dt′
: [x(t) = x′(t′) + V t′] ⇒ dx(t)

dt
=
dx′(t′)

dt′
+ V

⇒ vx = v′x + V , (2.4)

where vx = dx/dt, v′x = dx′/dt′, and we used t = t′ from equation (1.1). So
if v′x = c, then vx = c + V 6= c for V 6= 0, which contradicts the postulate,
and we have a problem: Galilean transformations are incompatible with the
universal speed of light. The second postulate can then be seen as a condi-
tion on the transformation rules relating the coordinate systems of inertial
observers.

The overpriced million dollar question is then: what are the correct trans-
formation equations relating the coordinates of O′ and O to replace the
Galilean transformation? Since the Galilean transformation arises intuitively
from our basic sense of the world around us, it better be the case that it can
be viewed at worse as a decent approximation to the correct transformation,
which we now set out to find.

2.1.2 The Lorentz transformation

As shown aready in Figure 2.1, frames O and O′ are assigned coordinate la-
bels (t, x, y, z) and (t′, x′, y′, z′) respectively, such that O′ moves with velocity
V in the positive x direction as seen by observers at rest in frame O, with
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the x and x′ axes aligned and the y′ axis parallel to the y axis, and the z′

axis parallel to the z axis. According to the Galilean transformation, the
coordinates in O are related to those in O′ by (1.1)

x = x′ + V t′, y = y′, z = z′, t = t′, (2.5)

while the coordinates in O′ are related to those in O by the inverse transfor-
mation

x′ = x− V t, y′ = y, z′ = z , t′ = t (2.6)

which can be obtained from the first set simply by interchanging primed and
unprimed coordinates and letting V → −V .

Now the task at hand is to derive a replacement for the Galilean transfor-
mation, one that is consistent with the universal speed of light. We begin by
assuming that the new transformation for x, y, z and inverse transformation
for x′, y′, z′ have the somewhat more general, but still linear, form

x = γx′ + ζt′, x′ = γ′x+ ζ ′t, y = y′, z = z′ (2.7)

where γ, γ′, ζ, and ζ ′ are constants, independent of position or time. That is,
we have assumed for simplicity that the y and z transformations are the same
as in the Galilean transformation and that the equations for x(x′, t′) and for
x′(x, t) are still linear. We will have to see if these assumptions are consistent
with the speed of light postulate; if not, we will have to try something more
complicated. We will explicitly not assume that t is necessarily equal to t′.

Our goal now is to evaluate the constants γ, γ′, ζ, and ζ ′. We have four
constants to determine, hence we need four physical conditions. We can
determine three of the constants in terms of the fourth without ever invoking
the second postulate.

First of all, from the meaning of the relative frame velocity V , the origin
of the primed frame, (x′, y′, z′) = (0, 0, 0) must move with velocity V in the
positive x direction as measured in the unprimed frame; i.e., , if x′ = 0, then
x = V t (condition 1). This forces ζ ′ = −V γ′ in the second of equation (2.7).
We also want the origin of the unprimed frame to move in the opposite
direction with speed V as measured in the primed frame; i.e., if x = 0 then
x′ = −V t′ (condition 2). This gives ζ = V γ in the first of equations (2.7).
Therefore we can write

x = γ(x′ + V t′), x′ = γ′(x− V t), y = y′, z = z′. (2.8)



2.1. FOUNDATIONS

Now the first postulate asserts that there is no preferred inertial frame of
reference, so from the symmetry this implies we must have γ′ = γ. Why is
that?

Consider a clock A′ at rest at the origin of O′; it reads time t′ and it
always sits at x′ = 0. When it reads t′ = 1 s, its distance from the origin of
O, according to O observers, is x = γV (1 s), from the first equation above.
Consider another clock A at rest at the origin of O; it reads time t and it
always sits at x = 0. When it reads t = 1 s, its distance from the origin of
O′, from the point of view of O′, is x′ = −γ′V (1 s), from the second equation
above: The minus sign simply reflects the fact that O moves in the negative
x′ direction from the point of view of O′. However, except for this minus sign,
which is related to the direction of travel, the distances moved by A and B
when each reads 1 s should be exactly the same, according to the egalitarian
first postulate. If they were different, it would allow us to say that one frame
(say the frame in which the distance moved was greater) was fundamentally
“better” that the other frame. This forces us to the conclusion that γ′ = γ
(condition 3).

The transformation now becomes

x = γ(x′ + V t′), x′ = γ(x− V t), y = y′, z = z′ (2.9)

for some still undetermined value of γ. The Galilean transformation assumes
γ = 1, but as we have seen, this choice is inconsistent with a universal speed
of light.

We now finally require that if x = c t then also x′ = c t′, corresponding
to a beam of light emitted from the mutual coordinate origins at the instant
t = t′ = 0 when the origins coincide (condition 4, i.e., Postulate 2). The
beam moves in the x directions of both frames with the same speed c, in
which case the first two of equations (2.9) become

t = γ(1 + V/c)t′ and t′ = γ(1− V/c)t. (2.10)

We can eliminate t′ by substituting the second equation into the first; this
gives

t = γ2(1 + V/c)(1− V/c)t = γ2(1− V 2/c2)t, (2.11)

so we must choose γ2 = (1− V 2/c2)−1. Finally, we need the positive square
root so that γ → 1 as V → 0, because as V → 0 the two sets of axes coincide.
Therefore the final results for x(t′, x′) and x′(t, x) are

x = γ(x′ + V t′) and x′ = γ(x− V t), where γ =
1√

1− V 2/c2
. (2.12)
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We can now find the transformation equations for t and t′. Substitute
x′ = γ(x − V t) into the right-hand side of x = γ(x′ + V t′); the resulting
equation can be solved for t′ to give

t′ = γ

(
t− V x

c2

)
. (2.13)

We can instead eliminate x between the two equations and then solve for t
to give

t = γ

(
t′ +

V x′

c2

)
, (2.14)

which is the same as equation (2.13) if we interchange primed and unprimed
coordinates and let V → −V . Thus we have the amazing and profound result
that there is no longer an absolute time, the same in all frames. Relativity
shows that time and space have become closely intertwined.

The entire set of transformations from primed to unprimed coordinates
can be written in the compact form

c t = γ(c t′ + β x′), (2.15)

x = γ(x′ + β c t′),

y = y′,

z = z′,

where

β ≡ V/c and γ =
1√

1− β2
. (2.16)

These equations are collectively called the Lorentz transformation or col-
loquially Lorentz boost. We have used the product c t in the equations,
instead of just t by itself, so that the four coordinates c t, x, y, z all have
the same dimension of length. The inverse Lorentz transformation, for
(c t′, x′, y′, z′) in terms of (c t, x, y, z), is the same, with primed and unprimed
coordinates interchanged and with β → −β. We began with four constants
γ, γ′, ζ, ζ ′ and found four conditions they must obey, which determined all
four in terms of the relative frame velocity V .

Having found the transformation by invoking the speed of light only in
the x direction, we can verify that the transformation works also for light
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moving in any direction. Let a flashbulb flash from the mutual origins of
frames O and O′ just as the origins pass by one another. In the unprimed
frame, the square of the distance moved by the wavefront of light in time t is

x2 + y2 + z2 = c2t2. (2.17)

That is, the light flash spreads out at speed c in all directions. Now, using the
Lorentz transformation of equations (2.15), we can see how the flash moves
in the primed frame. Rewriting (2.17) in terms of primed coordinates, we
have

[γ(x′ + βc t′)]2 + y′2 + z′2 = [γ(c t′ + βx′)]2, (2.18)

which, with a little algebra, yields

x′2 + y′2 + z′2 = c2t′2. (2.19)

That is, the light flash also moves in all directions at speed c in frame O′.
Therefore the second postulate is obeyed for light moving in any direction,
if we use the Lorentz transformation to transform coordinates.

Let us stare at the Lorentz transformation equation (2.15) for a while and
observe some of its features:

• For V � c, i.e., when the two observers are moving with respect to one
another at a speed much less than that of light, we have β � 1 and
γ ∼ 1 to leading order in β, and the Lorentz transformation (2.15)) re-
duces to the Galilean transformation (1.1). That’s a sanity check: our
intuition led us to (1.1) because our daily experiences involve mechanics
at speeds much less than that of light. Hence, we may still use Galilean
transformations as long as we restrict ourselves to problems involving
slow speeds and as long as we don’t care about high-precision measure-
ments. Obviously, Maxwell’s equations involve light and so require the
use of the full and correct form of the transformation of coordinates,
the Lorentz transformations. This is why electromagnetism historically
seeded the development of relativity.

• There are two novelties at work: the mixing of time and space, the
coordinates t and x, t′ and x′; and an interesting scale factor γ ≥ 1.
Figure 2.2 shows a plot of γ as a function of β. We can see that γ
changes no more than 1% from unity for 0 ≤ β ≤ 0.1, or speeds up to
about 10% of light. A rough rule of thumb is then to require v < 0.1c
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FIG 2.2 : Graph of the γ factor as a function of the relative velocity β. Note that γ ∼= 1 for
nonrelativistic particles, and γ →∞ as β → 1.

for Newtonian mechanics. Note also the divergence as V → c: the
corresponding flip of the sign under the square root for V > c implies
an upper bound on speed β < 1⇒ V < c. Nature comes with a speed
limit!

EXAMPLE 2-1: Rotation and rapidity

Consider two observers O and O′, stationary with respect to one another and with identical
origins, but with axes {x, y, z} and {x′, y′, z′} relatively rotated. Focus on a case where
observer O’s coordinate system is rotated with respect to O′’s by a positive angle θ about the
z axis

x = x′ cos θ + y′ sin θ, y = −x′ sin θ + y′ cos θ, z = z′ . (2.20)

It is often convenient to write this transformation in matrix notation: x
y
z

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x′

y′

z′

 . (2.21)

In general, a rotation can be written as

r = R̂ · r′ , (2.22)
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for r = (x, y, z), and r′ = (x′, y′, z′), with R̂ a 3 by 3 rotation matrix satisfying the orthog-

onality condition R̂
t
· R̂ = 1 as well as having the determinant |R̂| = 1. Here R̂

t
is the

transpose matrix, the reflection of R̂ about its principal diagonal.
Interestingly, we can present a Lorentz boost in analogy to rotations, making its structural

form more elegant and transparent. To do so, we start by introducing a four component
“position vector”

r ≡ (c t, r) = (c t, x, y, z) , (2.23)

denoting an event in spacetime occurring at position (x, y, z) and time t. This is a natural
notation, since Lorentz transformations mix space and time coordinates; again, we use c t as
the time component to give it the same dimension of length as the other components. We
can now write the Lorentz boost in equation (2.15) as a matrix multiplication

c t
x
y
z

 =


γ γ β 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




c t′

x′

y′

z′

 . (2.24)

Consider the parametrization

γ ≡ cosh ξ ≥ 1 , (2.25)

where ξ is called rapidity. Using the identity cosh2 ξ − sinh2 ξ = 1 one can easily show that

γ β = sinh ξ , (2.26)

so our Lorentz boost now becomes
c t
x
y
z

 =


cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1




c t′

x′

y′

z′

 , (2.27)

much like a rotation but with hyperbolic trigonometric functions instead and a sign flip! We
say that Lorentz transformations rotate time and space into one another.

We can write the most general Lorentz transformation in matrix notation as well,

r = Λ̂ · r′, (2.28)

for r = (c t, x, y, z), and r′ = (c t′, x′, y′, z′), with Λ̂ a general 4 by 4 matrix satisfying the
condition

Λ̂t · η̂ · Λ̂ = η̂ (2.29)

as well as

|Λ̂| = 1 , (2.30)
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where η̂ is the 4 by 4 matrix

η̂ =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.31)

For a derivation of this general statement, see the Problems section of this chapter. Notice
that

Λ̂ =


cosh ξ sinh ξ 0 0
sinh ξ cosh ξ 0 0

0 0 1 0
0 0 0 1

 (2.32)

satisfies (2.29) and (2.30). Note also that η̂ is almost the identity matrix, but not quite,

because of the minus sign in the first entry. It is known as the metric of flat spacetime.

Correspondingly, Λ̂ satisfies an ‘almost’ orthogonality condition (2.29). We will revisit these

observations in the upcoming sections as we develop our physical intuition for relativity.

2.2 Relativistic kinematics

Kinematics deals with how we describe motion, including the position, veloc-
ity, and acceleration of particles, for example, while stopping short of looking
for physical underpinnings for that motion, which is the subject of dynamics.
So we take up the essential topic of relativistic kinematics here, and then go
on to relativistic dynamics in the following section.

2.2.1 Proper time

Consider a particle moving in the vicinity of an observer O who describes its
trajectory by x(t), y(t), z(t). The observer can describe the location of the
particle in time and space using a position four-vector

r = (c t, x, y, z) . (2.33)

If dt, dx, dy, and dz represent infinitesimal steps in the evolution of the
particle, we can also write the infinitesimal displacement four-vector as

dr = (c dt, dx, dy, dz) . (2.34)
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Observer O may, for some yet mysterious reason, choose to compute the
quantity

ds2 = drt · η̂ · dr = −c2dt2 + dx2 + dy2 + dz2. (2.35)

The first part of this expression uses matrix notation: η̂ is the four by four
matrix from (2.31)), and the ‘t’ label denotes the transpose operation on the
column vector that is dr: that is, a row vector drt multiplies the matrix
η̂ which then multiplies the column vector dr. To see why this quantity
is interesting to compute, consider the same quantity as computed by an
observer O′ at rest in the primed frame. Equation (2.28) prescribes that we
must have

dr = Λ · dr′ . (2.36)

Substituting this into (2.35), we get

ds2 = drt · η̂ · dr
= dr

′T ·Λt · η̂ ·Λ · dr′ = dr
′T · η̂ · dr′

= −c2dt′
2

+ dx′
2

+ dy′
2

+ dz′
2

(2.37)

where we used (2.29). Comparing (2.35) and (2.37), we now see that ds2

is an invariant under Lorentz transformations! Observers O and O′ use the
same form of the expression in their respective coordinate systems and get
the same value for ds2. In general, quantities like ds2 that remain the same
under Lorentz transformations are said to be scalar invariants or Lorentz
invariants.

There is a physical way to understand why ds2 is the same in all inertial
frames. Imagine that observer O′ happens to be ‘riding’ with the particle
at the given instant in time she measures the displacement four-vector dr′.
Observer O′ would then see the particle momentarily at rest, with dx′ =
dy′ = dz′ = 0, since she is matching the particle’s velocity at that instant:
that is,

dr′ = (c dt′, 0, 0, 0) . (2.38)

Now dt′ ≡ dτ is an advance in time on the watch of O′, i.e., a watch in the
rest frame of the particle. We then have from (2.37)

ds2 = −c2dτ 2, (2.39)
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so the value of ds2 measures the period of an infinitesimal clock tick as mea-
sured in the rest frame of our particle. No wonder it is an invariant quantity!
The quantity τ is called the proper time of the particle. Equation (2.39)
also helps us relate the proper time τ of the particle to the time t in the
frame of reference of observer O, since we know that

ds2 = −c2dτ 2 = −c2dt2 + dx2 + dy2 + dz2 . (2.40)

Divide this equation by dt2 to get

c2dτ
2

dt2
= c2 − dx2

dt2
− dy2

dt2
− dz2

dt2
= c2 − v2 (2.41)

where v is the speed of the particle, from which we find that

dt = γ dτ (2.42)

with γ = 1/
√

1− β2 and β ≡ v/c. This implies that a time interval dτ in the
rest frame of the particle is perceived by observer O as an interval dt > dτ .
The effect is known as time dilation: from the point of view of an inertial
observer at rest in a frame in which some particle is moving with speed v,
if the observer ages by (say) ten seconds, the particle may age by only one
second in the observer’s frame! We say the particle’s time slows down as
seen by observer O. Note that this relation holds instantaneously even when
the particle is accelerating. At every instant in time, its changing velocity
results in a different amount for time dilation with respect to observer O.

We have learned that time is not at all a universal observable: it is a ‘mal-
leable’ quantity, with two observers in different reference frames disagreeing
about its rate of advance. To talk about a notion of time that everyone
agrees on in relativity, we need to refer to proper time — the time as mea-
sured in the rest frame of a particular reference observer or particle. For
speeds small compared to that of light we have γ ∼ 1 in (2.42), and we
recover the approximate Galilean statement of universal time dt = dτ .

At this point we will use our current discussion to introduce a notation
that will come in handy for the rest of the book. We have already started to
appreciate the elegance of lumping time and space together in a position four-
vector, and we also demonstrated the use of matrix language in compactifying
the notation. Putting these technologies together, let us label a position four-
vector alternatively as

r = (c t, x, y, z)→ (x0, x1, x2, x3) , (2.43)
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where x0 = c t, x1 = x, etc. Note in particular the superscript notation we
adopt. We will reserve subscripts to distinguish between the coordinates of
different particles. We can then neatly denote the components of the position
four-vector as xµ, where µ is an index that can be 0, 1, 2, or 3. We would
then write the components of the displacement four-vector dr as dxµ. Let us
now rewrite equation (2.35) in terms of this new “index notation”

ds2 =
3∑

µ=0

3∑
ν=0

dxµηµνdxν , (2.44)

where we are now representing the η̂ matrix by its components: ηµν is the
entry in the η̂ matrix (2.31) in the µth row and νth column1. The two sums
in the expression simply implement the usual matrix multiplication rule of
multiplying rows against columns. Note also this expression is now in the
form of a sum over numbers: dxµ, dxν , ηµν are just commutative numbers.
Therefore we can write

ds2 =
3∑

µ=0

3∑
ν=0

dxµηµνdxν =
3∑

µ=0

3∑
ν=0

dxµdxνηµν =
3∑

µ=0

3∑
ν=0

ηµνdxµdxν .(2.45)

As you can see, rewriting the sum symbol time after time becomes tedious.
In most cases, indices such as µ and ν will always be summed over 0, 1, 2, and
3. Hence, we also adopt the Einstein summation convention: all indices
appearing exactly twice in an expression are assumed to be summed over
unless explicitly stated otherwise. For example, we may now write simply

ds2 = ηµνdxµdxν (2.46)

with an implied sum over µ and over ν. To say that ds2 is a Lorentz invariant,
we would then write

ds2 = ηµνdxµdxν = ηµ′ν′dxµ′dxν′ , (2.47)

1A note for readers with more advanced background in differential geometry: In more
conventional and advanced notation, a distinction is made between upper and lower
Lorentz indices – corresponding to mathematical objects in the so-called tangent and
co-tangent spaces of spacetime. In our notation, all quantities are given in the tangent
space; correspondingly, all index contractions with the spacetime metric must be explicitly
shown. To simplify things, we also write all Lorentz indices as subscripts. For example,
a tangent space vector’s components vµ will be denoted as vµ; and a co-tangent space
co-vector’s components wµ will be denoted as ηµνwν .
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where primed indices refer to coordinates in the coordinate system ofO′. Note
that the ηµ′ν′ ’s are the same as the corresponding ηµν ’s (see equation (2.31)).

Now we can rewrite equation (2.28) in our new notation:

dxµ = Λµν′dxν′ . (2.48)

The components of the Lorentz matrix Λ̂ are represented by Λµν′ at the
µth row and ν ′th column. The ν ′ index appears twice in the expression on
the right-hand side, so it is summed over: The sum implements the matrix
multiplication Λ · dr′. There is also a single index µ; that index is not
repeated within the same expression, since it appears only once on each side
of the equal sign and so is not summed over. For every possible value of µ
we have a different equation — for a total of four. These are the relations
for the four components of dr. If we encounter an expression with an index
that occurs more than twice in the same term, a mistake has been made. An
expression ηµνxµAνBµ is undefined, for example.

Index notation takes some time to get used to, but it is worth it. It
is powerful, and the physics of relativity lends itself very naturally to this
notation and language. It is one of those things that requires practice to get
the hang of, but once mastery is achieved, it is difficult to remember how one
got by in the past without it. As we proceed with the discussion of relativity,
we adopt this notation from the outset to provide the reader with as much
practice and exposure as possible.

2.2.2 Four-velocity

Calculus is the natural language of motion: Newton invented differential cal-
culus to make the discussion of motion more natural and precise.2 Similarly,
four-vector notation is the natural language of relativity, because relativistic
physics inherently mixes time and space. One could proceed without the use
of this mathematical language of four-vectors, but that would come at the
expense of unnecessarily convoluting the discussion of the physics. It is im-
portant, however, to appreciate where the physics starts and where it ends.
The tool of four-vectors we will use in this section is just that, a mathemat-
ical tool. It comes with layers of logic that make the symmetries underlying

2Ironically, his masterpiece, the Principia, uses no calculus at all, because few of his
readers would have understood it: the Principia presents instead an exposition of mechan-
ics in a rather awkward mathematical language that often obscures the physics at hand,
particularly to present-day observers familiar with calculus!
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relativity more transparent and hence guides us to the next natural steps in
the discussion. Throughout, we still need to rely on the independent state-
ments of physics, i.e., the postulates of relativity, including the universality
of the speed of light.

We start by looking for an observable quantity that relates to good old
velocity, but which also fits more naturally into our new language of relativity.
We want a ‘four-velocity’, a quantity with four components that maps onto
the usual velocity at small speeds. For this new quantity to be natural in
relativity, it should transform under Lorentz transformations in a simple way.
Let’s call the component of four-velocity vµ, with µ = 0, 1, 2, 3 as usual; we
then require that

vµ = Λµν′vν′ . (2.49)

Whatever vµ may be for observer O, it relates to vν′ as seen by observer O′ by
this simple Lorentz transformation. It also needs to be related to our usual
notion of velocity — the rate of change of position per unit time. However,
time is not a universally invariant notion. The closest we can get to this
concept is proper time, so the obvious candidate for four-velocity is

vµ ≡
dxµ
dτ

. (2.50)

In this expression dxµ is the four-displacement of a particle observed by O,
and dτ is the advance in proper time of the particle in question — which
both observers agree upon. Since dxµ = Λµν′dxµ′ and dτ is invariant, we see
that this definition does lead to (2.49) as required. But how does it relate to
good old velocity? To see this, we need to write vµ explicitly in terms of the
coordinates of a fixed observer, say O:

vµ → (
dx0

dτ
,
dx1

dτ
,
dx2

dτ
,
dx3

dτ
) = (c

dt

dτ
,
dx

dτ
,
dy

dτ
,
dz

dτ
)

= (γc, γ
dx

dt
, γ
dy

dt
, γ
dz

dt
), (2.51)

where we used the time dilation relation obtained previously,

dt = γ dτ . (2.52)

Note that γ = 1/
√

1− v2/c2, where v is the speed of the particle as seen by
O.
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We now recognize the last three components of our four-vector as γ times
the ordinary velocity of the particle! We may write more compactly

vµ → ( γc, γv), (2.53)

lumping the last three entries together. For a slow-moving particle, we have
γ ∼ 1 and vµ ∼ (c,v), so we have achieved our goal of embedding velocity
into the four-vector language.

What have we gained from this exercise except mild levels of enjoyment?
Well, we now know how the ordinary velocity transforms under Lorentz trans-
formations, as we shall see!

EXAMPLE 2-2: The transformation of ordinary velocity

We can now relate the ordinary velocity of the particle v as measured by observer O to
the velocity v′ as measured by O′. To see this, we go back to equation (2.49) and expand it
in the explicit coordinates of O and O′.

Let us set up the problem. A particle is moving around in spacetime, and observers O
and O′ are measuring its trajectory. Frame O′ is moving with respect to O with speed V in
the positive x direction and their spatial axes are otherwise aligned; we then have the Lorentz
transformation matrix from (2.24)

Λ =


γ

V
γ

V
βV 0 0

γ
V
βV γ

V
0 0

0 0 1 0
0 0 0 1

 (2.54)

where βV = V/c and γ
V

= 1/
√

1− β2
V . That is, in the context of this problem we have

added the subscript V to the β and γ that describe the transformation between primed and
unprimed frames with relative velocity V , to distinguish it from the β and γ involving the
velocity v of a particle in frame O, and the β′ and γ′ involving the velocity v′ of the particle
in frame O′.

We can now write equation (2.49) in matrix notation
γc
γvx
γvy
γvz

 =


γ

V
γ

V
βV 0 0

γ
V
βV γ

V
0 0

0 0 1 0
0 0 0 1




γ′c
γ′v′x
γ′v′y
γ′v′z

 . (2.55)

All that is left is a simple matrix multiplication to obtain the relativistic velocity addition law.
From the first row, we find

γ = γ
V
γ′
(

1 + βV
v′x
c

)
, (2.56)
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which we can then use in the other three rows to get the velocity transformation

vx =
v′x + V

1 + V v′x/c
2

vy =
v′y

γ
V

(1 + V v′x/c
2)

vz =
v′z

γ
V

(1 + V v′x/c
2)
. (2.57)

Let us analyze the physical content of these equations.

• As a sanity check, we should first take the small-speed limit, for which V vx′/c2 � 1
and γ

V
∼ 1; then

vx = v′x + V

vy = v′y

vz = v′z . (2.58)

These are the familiar Galilean addition of velocity rules we know and love. So far, so
good.

• The real deal happens when speeds in the problem compete with that of light. Let us
say the particle is seen by observer O′ to be traveling at the speed of light in the x′

direction, v′x = c, v′y = v′z = 0. We then have

vx =
c+ V

1 + V/c
= c

vy =
0

γ (1 + V/c)
= 0

vz =
0

γ (1 + V/c)
= 0 . (2.59)

At this point, we are justified in getting slightly emotional about the matter: everything
works as it is supposed to according to our original postulates!

• How about intermediate speeds, which bridge the gap between low speeds and the
speed of light? The simplest way to see the implication is to plot vx as a function of
v′x for fixed V . Figure 2.3 shows such a plot. We now see explicitly how relativity caps
speeds to be below that of light!

• It is also interesting to note that the relativistic velocity addition law has non-trivial
structure in the y and z directions, transverse to the relative motion of the two observers.
This comes about from the ratio γ′/γ; i.e., it is due to the fact that the tick-rates of the
two observers’ clocks are different. Even though transverse distances are not affected
by a change of reference frame, velocity depends also on the duration of clock ticks of
each observer.
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FIG 2.3 : The velocity vx as a function of v′x for fixed relative frame velocity V = 0.5c.

Note that without the use of four-vector language the derivation of these rather involved

expressions for velocities would have been more painful. The formalism helps us embed veloc-

ity into a structure that transforms in a simple way under Lorentz transformations — given

by (2.49). Yet, in explicit form, this rather simple expression metamorphoses to the beast

that is (2.57). The strategy now becomes obvious: try to embed any physical quantity of

interest into the language of four-vectors so that we get its Lorentz transformation for free;

then decompose the transformation law into its components to see the physical implications.

EXAMPLE 2-3: Four-velocity invariant

Before we proceed to a similar treatment of momentum, let us introduce a simple technical
exercise. We want to compute the quantity vµvνηµν , in which the indices µ and ν are repeated
and hence are to be summed over. It is an interesting quantity, since, writing it in matrix
notation,

vt · η̂ · v = v′t ·Λt · η̂ ·Λ · v′ = v′t · η̂ · v′ (2.60)

we get a Lorentz invariant, much like proper time. In index notation, we would write

vµvνηµν = vµ′vν′ηµ′ν′ . (2.61)

To compute this quantity, we write it in explicit form in terms of good old velocity,

vµvνηµν = −γ2c2 + γ2
(
v2
x + v2

y + v2
z

)
= −γ2c2

(
1− v2

c2

)
= −c2 , (2.62)
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which is obviously an invariant quantity!
Now let us compute this same expression using a different technique. Since vµvνηµν is an

invariant, we can evaluate it in any inertial frame. In particular, we can choose a frame O′ that
happens to be instantaneously at rest with respect to the particle whose velocity is represented
in the expression. In that special frame we have v′x = v′y = v′z = 0, and so we immediately
get vµ′vν′ηµ′ν′ = −c2. Therefore if we had been slightly more astute about things, we need
not have done all our previous work in (2.62): by simply observing that we have an invariant,
we would jump to a more convenient reference frame — the rest frame of the particle — and
perform the computation there mentally. The moral: it pays to know your invariants!

2.3 Relativistic dynamics

We are now prepared to investigate relativistic dynamics, including the causes
of changes in motion and such concepts as relativistic momentum and energy.

2.3.1 Four-momentum

In classical mechanics, the momentum of a particle is a three-vector, generally
with components in all three spatial directions. Can we find a four-vector
related to this good old classical momentum p = mv? Constructing it will
help us learn how momentum changes when we shift perspective from one
inertial observer to another in a fully relativistic context. This project turns
out to be easy, because we have already found an expression for the four-
velocity: The natural choice for the four-momentum is

pµ = mvµ . (2.63)

However, we need to be slightly careful. To get the required simple transfor-
mation rule

pµ = Λµν′pν′ (2.64)

from (2.49), we need the mass parameter m = m′ to be an invariant. We
do not want to bias ourselves towards a physical assumption that has yet
to come out of the postulates of relativity. Hence, we need to justify this
statement. Fortunately, we have already seen a similar situation when we
encountered the transformation of time. There, we found that the notion of
invariant time required a definition of proper time: time in the rest frame of
the observed particle. We can then safely adopt the same physical principle:
we introduce the notion of rest mass, mass of a particle measured in its rest
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frame. That is obviously a quantity all observers would agree upon. Let’s
denote it by m and refer to it as simply mass from here on; it is the only
mass the particle has, the same in all reference frames. The four-momentum
is then pµ = mvµ, as given already in equation (2.63).

Let us look at the components of this new quantity and understand their
physical significance. Recalling that the four-vector velocity has components
(γc, γv), it follows that for a particle of mass m moving with velocity v with
β = v/c, the four-momentum is

pµ → (γmc, γmv) (2.65)

where we have collected the last three terms together into a traditional three-
vector. At low speeds this has the familiar form p ∼ (mc,mv) to linear order
in v/c, with the addition of the zeroth component mc. The nonrelativistic
momentum p = mv is seen to be just an approximation to the true momen-
tum of a particle, p = γmv.

Note that even though the velocity v of a particle is restricted to be
v < c, because of the γ factor there is no upper limit to the momentum of a
particle. As the speed of the particle gets ever closer to the speed of light,
the momentum grows without bound. So far, things look promising.

What is the meaning of the quantity γmc, the zeroth component of the
momentum four-vector? The first clue to its meaning is the fact that in
Newtonian mechanics, the momentum of a particle is conserved if there are
no forces on it, and that is true in all inertial frames. By the principle of
relativity we want to retain this property for relativistic particles as well,
which means that the last three components (called the spatial components)
of the momentum four-vector should be conserved in the absence of forces.
However, when we Lorentz-transform the spatial components of a four vector
in one frame, they become a mixture of space and time components in another
inertial frame. Therefore to ensure conservation of the spatial components in
all frames means that the zeroth component (also called the time component)
must be conserved as well! So the zeroth component of the momentum four-
vector must also be some conserved quantity. What quantity could it be?

A second clue to the meaning of γmc comes from evaluating it for non-
relativistic velocities. Using the binomial series

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ..., (2.66)
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valid for |x| < 1, it follows that for nonrelativistic velocities v/c� 1,

γmc = mc

(
1− v2

c2

)−1/2

∼=
1

c

(
mc2 +

1

2
mv2

)
(2.67)

keeping the first two terms in the binomial series. This quantity is indeed
conserved for a free nonrelativistic particle. We recognize the second term
as the nonrelativistic kinetic energy of the particle, which of course is
conserved in the absence of forces, while the first term is an invariant quantity
proportional to the particle’s mass.

Therefore we identify the zeroth component of the momentum four vector
as E/c, where E is the energy of the particle. In Newtonian mechanics we
traditionally take the energy of a particle (subject to no forces or potential
energies) to be zero if it is at rest, but we now see that a particle at rest has
the mass energy

E0 = mc2, (2.68)

and if the particle is moving, it also has the kinetic energy

T = E − E0 = (γ − 1)mc2, (2.69)

which is approximately (1/2)mv2 in the nonrelativistic limit v/c� 1.
In summary, the momentum four-vector is actually an “energy-momentum”

four-vector, with components

pµ =

(
E

c
,p

)
(2.70)

where E = γmc2 = mc2 + (γ − 1)mc2, in which the first term mc2 is the
particle’s mass energy and the second term (γ − 1)mc2 is its kinetic energy.

EXAMPLE 2-4: Relativistic dispersion relation

We start with a technical exercise with interesting physical implications. We want to
compute the relativistic invariant

pµpνηµν = pµ′pν′ηµ′ν′ , (2.71)

which has a similar structure to vµvνηµν = −c2. In fact, since the four-momentum pµ = mvµ,
we can immediately write

pµpνηµν = −m2c2. (2.72)
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Let us expand this expression in components as seen by an observer O. Using pµ = (E/c,p),
we easily get

−E
2

c2
+ p2 = −m2 c2 . (2.73)

Alternatively, we write

E(p) =
√

(mc2)2 + p2c2 (2.74)

where we have taken E > 0. This is the relativistic dispersion relation for a particle with
mass m. The non-relativistic limit at low speeds corresponds to p � mc, which gives, after
expanding to leading order in p,

E(p) ' mc2
(

1 +
1

2

p2c2

(mc2)2
+ · · ·

)
= mc2 +

p2

2m
+ · · · (2.75)

Once again, we see the contribution of the mass energy mc2 as well as the Newtonian ki-
netic energy term T = p2/(2m) = (1/2)mv2. The full relativistic form of the dispersion
relation (2.74) allows us to also consider the opposite limit m→ 0 or p� mc, the case of a
light or ‘massless’ particle

E(p) ' p c . (2.76)

In the strict limit m → 0, this expression become exact. Hence, we have to entertain the
possibility of a massless particle that carries energy by virtue of its momentum! Substituting
E = γmc2 and p = γmv in this expression, we also get

γmc = γmv → v = c . (2.77)

Therefore we conclude that massless particles must travel at the speed of light. We can reverse
the argument and say that a particle with v = c ⇒ γ → ∞ must have zero mass if it is to
have finite energy E = γmc2. Since light travels at the speed of light (hopefully), there is
perhaps a sense in which we can think of light as a bunch of massless particles. Historically,
this simple observation helped seed the foundations of quantum mechanics.

We may then think of energy as being a more fundamental physical quantity than mass.

It exists irrespective of whether a particle has or does not have mass. We will see later on that

energy is indeed more fundamental — through a discussion of symmetries and conservation

laws. In due time, we will also see that massless particles gravitate as well, and that even

gravity also cares about all sorts of energy, not just mass energy.

EXAMPLE 2-5: Decay into two particles

Many particles decay into two other particles, as illustrated in Figure 2.4. The initial
particle of mass m0 is shown in its rest frame; it has energy m0c

2 and momentum zero. It
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BEFORE

AFTER

FIG 2.4 : A particle of mass m0 decays into two particles with masses m1 and m2. Both
energy and momentum are conserved in the decay, but mass is not conserved in relativistic
physics. That is, m0 6= m1 +m2.

subsequently decays into two particles, with masses m1 and m2. These two final particles must
move off in opposite directions to conserve momentum. As we will show, given the initial and
final masses, conservation of energy and momentum are sufficient to determine the energies,
momenta, and speeds of each final particle.

In relativity, just as in classical mechanics, we can assume that particles decay so quickly
that any reasonable external forces have insufficient time to cause changes in momentum or
energy during the very brief decay itself, so four-momentum is conserved. The initial four-
momentum is entirely that of the particle of mass m0,

piµ =

(
E0

c
, 0, 0, 0

)
. (2.78)

The final four-momentum is the sum of two four-momenta

pfµ =

(
E1

c
,p1

)
+

(
E2

c
,p2

)
(2.79)

where we have aligned the x axis along the direction in which the two particles fly off.
Since we need

piµ = pfµ , (2.80)

we immediately see that

E0 = E1 + E2 (2.81)
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and

0 = p1 + p2. (2.82)

The mass m0 is given; hence so is E0, since

E0 = m0c
2 (2.83)

for p0 = 0. The conservation law implies that the two particles emerge in opposite directions.
Looking back at (2.81)) and (2.82), we actually have four unknowns that describe the problem:
E1, E2, and the magnitudes of the momenta p1 and p2. Can we then unravel the kinematics of
this problem with the only information we have, the masses of the particles? Equation (2.81)
gives us one condition. Equation (2.82) leads to p1 = p2 – the magnitudes of the momenta
must be the same – which is a second condition. We then need two additional conditions.
These are the relations E2 − p2c2 = m2c4 for each of the two emerging particles. Hence, we
know the problem is solvable3.

It follows that

E2
2 − p2

2c
2 = m2

2c
4 = (m0c

2 − E1)2 − p2
1c

2 (2.84)

using energy conservation for the first term and momentum conservation for the second term.
Multiplying out the right-hand side, we find that

m2
2c

4 = m2
0c

4 − 2m0c
2E1 + E2

1 − p2
1c

2 = m2
0c

4 − 2m0c
2E1 +m2

1c
4. (2.85)

We can then solve this last equation for E1, giving

E1 =

(
m2

0 +m2
1 −m2

2

2m0

)
c2. (2.86)

Thus we have solved the problem. Having found E1 in terms of known quantities, we can
also find E2, both momenta, the particle velocities, and other quantities as well, using the
conservation laws along with E2 − p2c2 = m2c4.

In nuclear or particle physics, where two-particle decays are common, one usually uses
energy units in calculations. In energy units the energy of a particle is given in MeV (106

electron volts), momenta in MeV/c, and masses in MeV/c2. As a simple example, the π0

meson, with mass 135 MeV/c2, decays into two photons, each massless. Therefore the energy
of photon 1 as seen from the rest frame of the meson is

E1 =

(
m2

0 + 0− 0

2m0

)
c2 =

m0

2
c2 = 67.5 MeV (2.87)

and the magnitude of its momentum is p1 = E1/c = 67.5 MeV/c.

3The reader may worry about one more unknown in the full problem: the angle at
which the two particles emerge back to back. But this angle is undetermined because of
the spherical symmetric attributes of the setup: any angle is consistent with energy and
momentum conservation. Fixing the angle would require additional physical information
about the natural laws underlying the decay process at hand.
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2.3.2 Four-force

Finally, we seek a four-vector force that is responsible for changes in the
four-momentum of a particle. A “four-force” would allow us to reformulate
Newton’s second law for relativistic mechanics, since non-conservation of
momentum in Newtonian physics implies the presence of a force F = dp/dt.
We then want to embed the notion of force in a four-vector as well. Let us
label the four-vector force as fµ and propose that

fµ =
dpµ
dτ

. (2.88)

We see that once again we have used proper time to measure rate of change.
Therefore, observer O′ would write

fµ′ =
dpµ′

dτ
(2.89)

to describe the same physics – with the implicit Lorentz transformation of
our new four-force fµ = Λµµ′fµ′ .

A force law is an independent statement of physics, so one then needs to
check each component of fµ – its detailed form in terms of the parameters of
the particle and its environment – to see whether the Lorentz transformation
changes it beyond the expected fµ = Λµµ′fµ′ . Since all inertial observers are
to see the same physics, this should not happen! For now, let us assume that
whatever forces appear on the left-hand side of (2.88)) are indeed consistent
with the postulates of relativity. We want instead to focus on a much more
urgent issue: what new physics does our reformulation of Newton’s second
law given by (2.88 add to the dynamics, on top of what we already know
from the Newtonian realm?

To see the implications of (2.88), let us write it explicitly in component
form,

(f0,f) = γ
d

dt
(γmc, γmv) (2.90)

where we use the time dilation relation (2.52) to write dτ in terms of observer
O’s time differential dt, and we collect the three spatial components of our
four-vectors into the usual three-vector notation. We look at the easy part
first: the spatial components are

f = γ
d

dt
(γmv) . (2.91)
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Imagine that the particle is subject to no external forces, f = 0. We then
have momentum conservation

d

dt
(γmv) = 0 , (2.92)

where again the momentum is p = γmv, and not the nonrelativistic approx-
imation p = mv.

Defining force F as the rate of change of p, we would need to write

F ≡ d

dt
(γmv) . (2.93)

The quantity F corresponds to the force in Newtonian mechanics: it is the
rate of change of momentum as seen by a given observer. Looking back
at (2.91), we then interpret the lower case quantity f as

f = γF . (2.94)

Now what is the meaning of the zeroth component of (2.90)?

f0 = γ
d

dt
(γmc)? (2.95)

Recall that the energy of the particle is E = γmc2, so

f0 =
d

dτ
(γmc) =

1

c

dE

dτ
. (2.96)

Earlier we showed that E and p obey E2 = m2c4 +p2c2, so differentiating
this equation with respect to τ gives

2E
dE

dτ
= 2

(
px
dpx
dτ

+ py
dpy
dτ

+ pz
dpz
dτ

)
c2 ≡ 2

(
p · dp

dτ

)
c2, (2.97)

and so, using E = γmc2 and p = γmv,

dE

dτ
=

1

γmc2
(γmv · f) c2 = v · f ⇒ dE

dt
= F · v (2.98)

which we recognize as the rate at which the force does work on the particle,
i.e., the power input to the particle. So finally the four components of the
force four-vector are

fµ →
(
γ

1

c
v · F , γF

)
, (2.99)
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where the zeroth component of the four-force is the rate at which the energy
flows in/out of the system. We now have also learned how force must trans-
form under Lorentz transformations, since fµ is a four-vector and we have
fµ′ = Λµ′µfµ.

Summarizing the dynamical results so far, we are led by the postulates
of relativity to a modification of the transformation rules that relate the
perspectives of inertial observers. We then developed a mathematical lan-
guage that naturally lends itself to Lorentz transformations, and we discussed
four-vectors and Lorentz invariants. Next, we attempted to embed various
physical quantities, such as velocity, momentum and force, into the language
of four-vectors. In doing so, we wrote quantities that match the correspond-
ing Newtonian ones at low speeds, but are packaged in a manner that easily
determines how they change under Lorentz transformations. This led us to a
revised velocity addition law, a new understanding of momentum and energy,
including a realization that mass is a form of energy, and finally a revised
concept of force and of Newton’s second law of motion.

2.3.3 Dynamics in practice

At this point it is useful to step back and think about mechanics in light
(no pun intended) of all the new revisions we have talked about. A nice
organizing framework is to revisit the three laws of Newton and fit them into
the postulates of relativity.

• Unchanged first law: There exists a class of observers — henceforth
labeled inertial observers — for whom the laws of physics are the
same. Given one inertial observer, another observer is inertial if their
two frames have a constant relative velocity. In an inertial frame, in
the absence of forces, a particle will move in a straight line at constant
speed.

• New fourth law: The universal speed of light is a law of physics:
light moves at the same speed with respect to all inertial observers.
This implies that the inertial reference frames defined in the first law
are connected to each other by Lorentz transformations.
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• Revised second law: The rate of change of four-momentum is the
four-force

fµ =
d

dτ
(mvµ) =

dpµ
dτ

(2.100)

where vµ = dxµ/dτ and τ is proper time. In the absence of a four-force,
energy and momentum are conserved.

• Extended third law: For every four-force there is an equal but op-
posite four-force. The spatial part of this statement ensures total mo-
mentum conservation for an isolated system: for an isolated system of
particles, action-reaction pairs cancel so that the total force is zero and
total momentum is conserved. We will see this in more detail in a later
chapter on systems of particles. The temporal part of our new state-
ment is about energy conservation for an isolated system: you can see
this from the fact the the fourth component of the four-force measures
rate of change of energy.

One can then use these statements to study mechanics with speeds all the
way up to that of light. At low speeds we drop the new fourth law and recover
Newton’s three laws as approximate laws of physics, and Galilean transfor-
mations connect inertial reference frames. Beyond these four statements,
what then remains is to complete the dynamical picture by incorporating
forces consistent with the postulates of relativity.

Physical intuition is developed through explicit examples. Hence, we
proceed now with a few case studies.

EXAMPLE 2-6: Uniformly accelerated motion

Consider a particle of mass m moving in one spatial direction, say along the x axis of an
observer O, and suppose that this particle is subjected to an external four-force

(f0,f) =

(
γ

1

c
v · F , γF

)
, (2.101)

with F a constant three-vector pointing in the positive x direction. We want to see whether
such a constant force can accelerate the particle past the speed of light! Writing the component
of fµ = dpµ/dτ in the x direction, we get

γFx = γ
d

dt
(γmvx) . (2.102)
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Simplifying things, we have

Fx = m
d

dt
(γvx) , (2.103)

which is a differential equation we can solve for vx. The left-hand side is a constant, and
the velocity vx(t) appears both explicitly and also implicitly in the gamma-factor γ = (1 −
(vx)2/c2)−1/2. Integrating equation (2.103) with vx(0) = 0, we get

Fx
m
t =

vx√
1− v2

x/c
2

(2.104)

which we can solve for vx(t),

vx(t)

c
=

Fxt/mc√
1 + (Fxt/mc)

2
. (2.105)

We recognize a = Fx/m as the Newtonian acceleration, which is a constant in this case.
Therefore in terms of a,

vx(t)

c
=

a t/c√
1 + (a t/c)

2
. (2.106)

The at factor looks very familiar, but the square root piece changes the ball game. At early
times, when the particle has not yet acquired enough speed, we have a t/c� 1 and we recover
the Newtonian expression vx(t) = a t. At large times, however, relativity kicks in to ensure we
do not violate the upper speed limit

vx(t)

c
→ 1 (2.107)

as t→∞. Figure 2.5(a) shows a plot of vx(t) with the corresponding tapering-off feature at
large speeds.

We can also look at the particle’s trajectory, shown in Figure 2.5(b) by integrating

dx

dt
=

at√
1 + (at/c)2

(2.108)

with x(0) = 0 for a particle that starts at the origin. One gets

x2 − c2t2 =
c4

a2
. (2.109)

In the c t-x plane, this has the shape of a hyperbola. We will revisit this in the next section

when we discuss Minkowski diagrams.
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(a) (b)(a)

FIG 2.5 : Plots of relativistic constant-acceleration motion. (a) shows vx(t), demonstrating
that vx(t) → c as t → ∞, i.e., the speed of light is a speed limit in Nature. The dashed line
shows the incorrect Newtonian prediction. (b) shows the hyperbolic trajectory of the particle
on a c t-x graph. Once again the dashed trajectory is the Newtonian prediction.

EXAMPLE 2-7: The Doppler effect

The Doppler effect is the shifting of frequencies of sound or light between the perspectives
of observers who are moving with respect to one another. We are most familiar with it in the
context of sound (because the speed of sound is much less than the speed of light), when for
example we notice a change in the pitch of the siren of an ambulance as it passes by. Sound
also propagates in some medium, whether air, liquid, or solid, so that it has a particular fixed
speed given by the properties of the particular medium in the medium’s rest frame. Its speed
is therefore not an invariant and will be subject to the velocity addition rule. Hence, the more
interesting scenario for relativity involves the Doppler effect for light, because in that case there
is no medium to provide a preferred frame of reference. We want to find how the frequency
of light shifts as seen by different moving observers.

Consider our usual setup of observer O′ moving with a constant speed V along the positive
x direction towards another observer O as shown in Figure 2.6. Observer O′ aims a laser
beam of frequency ν′ towards O, and we want to find the frequency ν perceived by O; that
is, we seek the Lorentz transformation of frequency.

In another of his landmark papers of 1905, Einstein showed that light consists of particles
now called photons, and that the energy E and momentum p of a photon are each propor-
tional to frequency, E = hν and p = E/c = hν/c, where h is Planck’s constant. This means
that the four-momentum of the laser beam is

pµ =

(
E

c
, p, 0, 0

)
=

(
h ν

c
,
h ν

c
, 0, 0

)
. (2.110)
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FIG 2.6 : Observer O′ shooting a laser towards observer O while moving towards O.

All that is left to do is write the Lorentz transformation pµ = Λµν′pν′ in explicit component
form. That is,

h ν/c
h ν/c

0
0

 =


γ

V
γ

V
βV 0 0

γ
V
βV γ

V
0 0

0 0 1 0
0 0 0 1




h ν′/c
h ν′/c

0
0

 (2.111)

where βV = V/c. This leads to

ν = γ
V
ν′ + γ

V
βV ν

′, (2.112)

where Planck’s constant has dropped out of the equation. A little algebra then shows that

ν

ν′
=

√
1 + β

1− β
> 1. approaching observers (2.113)

This applies to the scenario where the laser beam is aimed from O′ towards O as O′ moves in
the positive x direction – implicit in the fact that the x component of pµ in (2.110) is taken
to be positive and it is assumed that the beam does arrive at O. In short, this applies when
the distance between the two observers is shrinking. The frequency received is greater than
the frequency emitted, ν > ν′, known as a blueshift, for obvious reasons. To see the other
possibility – i.e., O and O′ moving away from each other, we can just flip the sign of β in this
expression

ν

ν′
=

√
1− β
1 + β

< 1. receding observers (2.114)

Now the distance between the two observers is increasing, and we find that the received
frequency is less than the emitted one: we say there has been a redshift.
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Light cone

Particle
trajectory

An event

Light ray Light ray

FIG 2.7 : A point on a Minkowski diagram represents an event. A particle’s trajectory appears
as a curve with a slope that exceeds unity everywhere.

Doppler shifts for light are an extremely useful tool in physics and technology, from de-

termining the speeds of stars in our own galaxy and of distant galaxies, leading to Hubble’s

discovery of the expanding universe, to the use of frequency shifts in the Global Positioning

System (GPS) for location and navigation. In fact, if special-relativistic time and Doppler-shift

predictions were not included there would be large errors in position measurements using GPS.

Interestingly, it turns out to be equally essential for GPS to include additional effects due to

Earth’s gravity, as contained in Einstein’s general theory of relativity.

2.3.4 Minkowski diagrams

A particularly useful way to depict relativistic dynamics involves a visual tool
called a Minkowski diagram. Simply put, it is a plot of the trajectory of a
particle on a graph where the horizontal axis is one of the spatial directions
and the vertical axis represents time, or actually the product c t. Figure 2.7
shows an example. The trajectory of the particle appears as a line moving
upward, forward in time. It is sometimes referred to as the worldline of
the particle. Light rays appear on such a diagram as straight lines at 45◦, as
shown in the figure. A tangent to a trajectory corresponds to c/v, the inverse
relative speed of the corresponding particle. Notice that the worldline of the
particle in the figure has a slope greater than unity everywhere, since v/c < 1.

An isolated point on a Minkowski diagram corresponds to an event, since
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A

B
C

FIG 2.8 : Three events on a Minkowski diagram. Events A and B are timelike separated; A
and C are lightlike separated; and B and C are spacelike separated.

it has a definite time and position. If two events can be connected by the
physical trajectory of a particle (whose slope is everywhere greater than
unity), the two events are said to be timelike separated. The physical
implication is that earlier events can talk to the later event with physical
signals involving matter or light. A quick way to determine whether two
events are timelike separated is to draw a forward pointing lightcone wedge
with its apex at the earlier event, as shown in Figure 2.8. The other event
should then lie within the lightcone. We say that the two events are causally
connected; i.e., event A in the figure can cause event B. Event C lies outside
the lightcone for B: reaching it requires signal propagation faster than light,
i.e., a curve that has at least some interval where its slope is less than unity.
Such events are said to be causally disconnected; we also say events B and
C are spacelike separated. Event C in the figure lies on the lightcone of A.
This means that it can be reached from A with a light signal. A and C are
then said to be lightlike separated.

There is an algebraic way to determine whether two events are lightlike,
spacelike, or timelike separated. If we look at the position four-vector ∆rµ =
(c∆t,∆r) pointing from one event to the other (see Figure 2.8), if the slope
of this four-vector on the corresponding Minkowski diagram is greater than
unity, then the events are timelike separated and we have

∆rµ∆rνηµν < 0 . (2.115)
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FIG 2.9 : The hyperbolic trajectory of a particle undergoing constant acceleration motion on
a Minkowski diagram.

Similarly, we would get

∆rµ∆rνηµν > 0 (2.116)

for spacelike separated events, and

∆rµ∆rνηµν = 0 (2.117)

for lightlike separated ones. It is also useful to define this concept for any
four-vector, such as the velocity, momentum, and force four-vectors. For any
such four-vector, denoted by Aµ in general, we can write

AµAνηµν > 0 spacelike

AµAνηµν < 0 timelike

AµAνηµν = 0 lightlike (2.118)

Note in particular that the momentum and velocity four-vectors are timelike,
while the force four-vector is spacelike.

As an exercise in Minkowski diagrams, consider the trajectory of a particle
under the influence of a constant four-force, as encountered in a previous
example. From (2.109), we can now plot the profile of the worldline in
Figure 2.9. We see that the particle starts at rest with infinite slope (i.e.,
zero speed), then speeds up and asymptotically reaches the speed of light at
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45◦ slope in the figure. We note that the slope is everywhere greater than
unity, as expected.

Another use of Minkowski diagrams is to picture the relation between the
coordinate systems of two observers. The same set of events on a Minkowski
diagram can get labeled via different coordinates by different inertial ob-
servers. Figure 2.10 shows the grid lines of observer O′, who happens to be
moving with speed V along the x axis of O. The ct′ axis is the worldline of
observer O′ as seen by O, since it is obtained by setting x′ = 0: After all,
the ct axis of O is nothing but the trajectory of its origin on the Minkowski
diagram at x = 0. From (2.15)), we then see that the c t′ axis is a straight
line with slope c/V . The x′ axis is given by ct′ = 0 in the same spirit (as
is the x axis of O given by the ct = 0 condition); from (2.15) we can see
that it is a straight line with slope V/c. The ct′ and x′ axes are reflected
images of each other across the lightcone at the origin. The figure shows a
geometric realization of how an event gets labeled by the two observers: each
projects the event along her time and space axes, along ct and x for O, and
ct′ and x′ for O′. The reader is however cautioned in using concepts from
Euclidean geometry on the diagram for measuring distances. The vertical
axes here represent time! To measure the spacetime “distance” between two
events separated by say ∆t and ∆x, you want to use −c2∆t2 + ∆x2, not
c2∆t2 + ∆x2. That is, you want to use the Minkowski metric (2.31). Let
us look at some examples using Minkowski diagrams to develop our visual
intuition of relativity.

EXAMPLE 2-8: Time dilation

Consider our usual setup of two observers O and O′. The Minkowski diagrams are shown
in Figure 2.11 corresponding to a relative velocity V = (3/5)c, i.e., observer O′ is moving
in the positive x direction with (3/5)c relative to O. In Figure 2.11(a), we show two events
corresponding to two ticks of a clock carried by O. In Figure 2.11(b), we show two events
corresponding to two ticks of a clock carried by O′ instead. Let us focus on Figure 2.11(a).
O’s clock ticks are separated by ∆t. Using (2.15) with ∆x = 0, we have

c∆t′ = γ(c∆t− β∆x)⇒ ∆t′ = γ∆t . (2.119)

The corresponding time interval ∆t′ observed in the primed frame is then greater than ∆t. To
O′, this clock is moving in the negative x′ direction and runs slow: this is the phenomenon of
time dilation. Putting numbers in with V = (3/5)c, we have ∆t′ = γ∆t = ∆t/

√
1− V 2/c2 =

(5/4)∆t. Figure 2.11(a) shows the same conclusion graphically.
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FIG 2.10 : The grid lines of two observers labeling the same event on a spacetime Minkowski
diagram.

What if we reverse our perspective? Consider a clock carried by O′ instead, which ticks
with interval ∆t′? Figure 2.11(b) depicts the corresponding scenario. Algebraically, the tick
events of O′’s clock have ∆x′ = 0. Using (2.15) once again, we now get

c∆t = γ(c∆t′ + β∆x′)⇒ ∆t = γ∆t′ . (2.120)

Observer O will then perceive this clock-tick separation as ∆t = (5/4)∆t′ > ∆t′. To O, this

clock is moving in the positive x direction, and once again runs slow. In summary, from the

standpoint of any inertial observer, a moving clock runs slow by a factor of γ.

EXAMPLE 2-9: Length contraction

Minkowski diagrams are shown in Figure 2.12 for a primed frame O′ and unprimed frame
O corresponding to a relative velocity V = (3/5)c. Figure 2.12(a) depicts a scenario where
observer O′ carries a meter stick along with her. The dashed lines are the trajectories of the
endpoints of the meter stick. If O′ wants to measure the length of the stick, she must measure
the locations of both ends at the same time t′. The corresponding measurement is shown in
Figure 2.12(a) through two events occurring at t′ = 0 at the endpoints. We then have ∆t′ = 0
and ∆x′ = L0 where L0 is the rest length of the stick. If observer O is to measure the length
of the same stick, he must use two events at the endpoints of the stick simultaneously in his
reference frame, i.e., two events with ∆t = 0 and some value of ∆x. Using (2.15) with ∆t′ = 0
and ∆x′ = L0, one gets, after some straightforward algebra, ∆x = L0/γ = (4/5)L0 < L0!
The moving stick is therefore shorter to O. This is the phenomenon of length contraction
or Lorentz contraction. If we consider a stick carried by O instead, the scenario is shown
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(a) (b)(a)

FIG 2.11 : The time dilation phenomenon. (a) Shows the scenario of a clock carried by
observer O. (b) shows the case of a clock carried by O′.

in Figure 2.12(b). This time the rest length of the stick is given by ∆x = L0; and it is O′
who perceives the stick moving, now in the negative x′ direction. Once again, we can check
that O′ measures a length ∆x′ = (4/5)L0 < L0. Moving objects are contracted by a factor
of γ along the direction of motion. In fact, relativity introduces more elaborate geometric
aberrations of moving objects, including a pseudo-rotation effect and preservation of circular
shapes. We leave some of the discussion to problems at the end of the chapter.

A crucial ingredient in this analysis is the realization that two events that
are simultaneous in one reference are not necessarily so in another: this is
known as the relativity of simultaneity. In the case at hand, the mea-
surement of the locations of the two endpoints of the stick are simultaneous
to one observer, and hence constitute a read out of the length of the stick.
However, these same two measurements, as shown in the figure, are not si-
multaneous to the other observer, and hence cannot constitute a reading of
the length of the stick as measured by this other observer.

EXAMPLE 2-10: The twin paradox

Relativity abounds with so-called “paradoxes” – thought experiments that appear at first
to lead to conceptual contradictions. However, they all invariably arise from one of several
Newtonian traps. For example, one common pitfall is that of simultaneity: in relativity, two
events that are simultaneous in one reference frame are not necessarily so in another. We
saw this phenomenon at work in the previous example leading to geometric distortions. Yet,
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(a) (b)(a)

FIG 2.12 : The phenomenon of length contraction. (a) Shows the scenario of a meter stick
carried by observer O’. (b) shows the case of a stick carried by O.

– based on our Newtonian daily experiences – we have no intuition for this, because we never
encounter it in our normal experience. In general, once relativistic tinkering with the notion
of time is taken into account, paradoxes are quickly resolved. And in resolving each paradox,
one’s intuition for relativity develops a bit more.

In this example we focus on the classic twin paradox. The scenario goes as follows. John
lives in Claremont, CA and tracks time with his wristwatch. His twin, Jane, is on a trek to
a nearby star a distance D away. Jane will travel along a straight path at constant speed
V0 relative to John, then will turn around and come back with the same constant speed.
Figure 2.13(a) shows a Minkowski diagram of the setup with simultaneity lines according to
John. If V0 is large enough, time dilation effects will be at play. There are three segments of
the trip, two of which last for a period T1 to John, as shown in the figure, and the middle
segment lasting a period T0. The total time of the trip will be T0 + 2T1 on John’s wristwatch.
We want to compare this to the time elapsed on Jane’s wristwatch during the same period.
We can immediately tell that T1 = D/V0. However, Jane’s clock-rate will necessarily be slow
to John because of time dilation since she is moving relative to him. For the first and third
segments of the trip, Jane’s speed is constant and we simply have

T1 = γ0τ1 (2.121)

where τ1 is the time elapsed on Jane’s wristwatch while T1 has elapsed on John’s; and γ0 =
(1 − V 2

0 /c
2)−1/2. Hence, T1 > τ1 and John ages more during these segments. The second

segment is trickier since Jane is accelerating as she turns around to come back to Claremont.
Let us assume, for simplicity, that Jane decelerates at a constant rate during the turnaround.
From John’s perspective, that is, from the perspective of observers at rest in his inertial frame,
he can track what’s happening to Jane using the relativistic form of Newton’s second law. For
constant acceleration, this is a problem we have studied already. We know Jane’s trajectory
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(a) (b)

FIG 2.13 : Minkowski diagrams of the twin paradox. (a) shows simultaneity lines according
to John. During the first and third part of the trip, a time 2 × T1 elapse on John’s clock;
during the middle part, Jane is accelerating uniformly and the time elapsed is denoted by T0(b)
Shows simultaneity lines according to Jane, except for the two dotted lines sandwiching the
accelerating segment. Jane’s x′ axis is also shown for two instants in time. The segment labeled
T0 is excised away and borrowed from John’s perspective since Jane is a not an inertial frame
during this period. T ′1 and T ′2 on the other hand can be computed from Jane’s perspective.
Notice how Jane’s x′ axis must smoothly flip around during the time interval T0, as she turns
around. Her simultaneity lines during this period will hence be distorted and require general
relativity to fully unravel.
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would be hyperbolic on a Minkowski diagram as shown in Figure 2.13. We also know that her
speed will be evolving as

v(t) =
a t√

1 + a2t2/c2
(2.122)

where a is some negative constant acceleration and t = 0 is taken as the moment when she has
zero speed at the midpoint of the trip. Setting v(T0/2) = −V0, we can immediately deduce
that

a T0

2
= −γ0V0 , (2.123)

where T0 is the time it takes for Jane to change her speed from V0 to −V0 according to John,
as shown in the figure. How much time passes on Jane’s wristwatch during this period? At
every instant in time, Jane is moving with some speed v(t) and is subject to a time dilation
effect

dt =
dτ√

1− v(t)2/c2
. (2.124)

Substituting for v(t) and integrating over the period T0/2, we get

sinh
a τ0
2 c

=
a T0

2 c
, (2.125)

where τ0 is the time elapsed on Jane’s wristwatch during the turnaround. Eliminating a
using (2.123), we can then write

T0 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 > τ0 . (2.126)

We thus have full control over the computation from John’s perspective. We can tell that
while Jane’s wristwatch ticks for a period of

τ0 + 2 τ1 (2.127)

during the full trip, John’s clock ticks

T0 + 2T1 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 + 2 γ0τ1 (2.128)

during the same period. Hence, John ages more, since T0 > τ0 and T1 > τ1. Let us summarize
the result: The travel time

on John’s watch = T0 + 2T1 =
2 γ0V0

|a|
+

2D

V0
, (2.129)

on Jane’s watch = τ0 + 2 τ1 =
2 c sinh−1(γ0V0/c)

|a|
+

1

γ0

2D

V0
(2.130)
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where we used T1 = D/V0 and T0 = 2 γ0V0/|a| to quote both results in terms of D (the
distance of travel according to John), a (Jane’s acceleration according to John), and V0

(Jane’s speed for most of the trip). Notice that for small speeds, V0 � c, and the two periods
become approximately the same, as expected, since sinh−1(γ0V0/c) ' (γ0V0/c) and γ0 ' 1.

Thus, Jane has aged less during the travel! This is fine and interesting until you try
to reverse your perspective. From Jane’s point of view, she was not moving. Instead, John
traveled away while the star visited her! Both John and star traveled past Jane at speed V0

in the opposite direction, as in watching trees move past you while you are driving a car.
According to Jane, is it then John’s time that is dilated? Hence, by the time the trek is over
and the twins meet, would Jane expect that John has aged less during her travel period? Since
John and Jane can now meet and compare notes, only one of the two can be correct, and
hence the paradox.

The resolution lies in the realization that Jane is not at rest in any single inertial reference
frame throughout the trip, while John is. This is because Jane has to decelerate and turn
around at the star to come back to Claremont. During the turnaround period, Jane is not an
inertial observer, and John and Jane are not equivalent observers as far as the laws of physics
are concerned. For example, Jane can hold a pendulum and notice that it sways while she
is turning around to come back home. To find out the outcome from Jane’s perspective, we
would need to learn how to handle the point of view of accelerating observers; we need to
know how space and time are affected in Jane’s reference frame when she is decelerating. This
quickly gets us into the territory of Einsteins’s general theory of relativity, and we want
to avoid doing this. Fortunately, we can immediately deduce that John’s conclusion must be
the correct one since he is indeed inertial: Jane ages less. However, we can still analyze Jane’s
point of view to a certain satisfactory extent, and we will do so using graphical methods.
Figure 2.13(b) shows the same setup with simultaneity lines according to Jane. The middle
segment of the trek where Jane is not inertial has been excised: for this period, we still need
to rely on John’s perspective. We then take as given

T0 =
(γ0V0/c)

sinh−1(γ0V0/c)
τ0 > τ0 . (2.131)

The question is now to determine T ′1 and T ′2 as shown in the figure. T ′1 corresponds to the
time elapsed on John’s wristwatch during the first segment according to Jane. Time dilation
tells us that it is given by

τ1 = γ0T
′
1 ⇒ T ′1 =

τ1
γ0

(2.132)

since John is doing the moving according to Jane. This makes sense since Jane sees the
distance D contracted to D′ = D/γ0. So, her travel time must be τ1 = (D/γ0)/V0 = T1/γ0

as we found before from John’s perspective. To find T ′2, we need to look at the figure and do a
bit of geometry. The slope of Jane’s x′ axis on the figure is ±V0/c. We can then immediately
read off

c T ′2 =
V0

c
×D . (2.133)
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Putting things together we find the total time of the trip on John’s wristwatch from Jane’s
perspective

Travel time on John’s wristwatch = 2T ′1 + 2T ′2 + T0

=
2 τ1
γ0

+
2V0D

c2
+

2 γ0V0

|a|
=

2D

γ2
0V0

+
2V0D

c2
+

2 γ0V0

|a|

=
2D

V0
+

2 γ0V0

|a|
(2.134)

where we used τ1 = (D/γ0)/V0 and T0 = (2 γ0V0)/|a|. We see that the conclusion is identical

to John’s, equation (2.129): John ages more. From Jane’s perspective, we relied on her

notion of simultaneity during the first and third segments of the trip (computations of T ′1 and

T ′2), during the intervals when Jane is an inertial observer. However, we did borrow John’s

conclusion about his and Jane’s clock rates (computation of T0), since his perspective was

the inertial one – a framework where the laws of special relativity can be applied. During

this acceleration phase, the laws of physics are altered from Jane’s perspective, and to carry

the computation of T0 from her reference frame requires us to learn how special relativity is

modified in an accelerated frame. We will see in Chapter 4 that the principle of equivalence

plays a central role in such settings. However, a full treatment necessitates excursions into

the subject of general relativity — a fully relativistic theory of gravity. Although we will

delve a bit into general relativity in Chapter 10, a full treatment of this beautiful subject goes

beyond the scope of our book.
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Problems

PROBLEM 2-1: Clock A is placed at the origin of the primed frame; it reads time t′ = 0
just as the origins of the primed and unprimed frames coincide. At a later time t to observers in
the unprimed frame, clock A has moved a distance x = V t. Using the Lorentz transformation,
find the reading t′ of clock A.

PROBLEM 2-2: A primed frame moves at V = (3/5)c relative to an unprimed frame. Just
as the origins pass, clocks at the origins of both frames read zero, and a flashbulb explodes at
that point. Later, the flash is seen by observer A at rest in the primed frame, whose position
is (x′, y′, z′) = (3 m, 0, 0). (a) What does A’s clock read when A sees the flash? (b) When A
sees the flash, where is A located according to unprimed observers? (c) To unprimed observers,
what do their clocks read when A sees the flash?

PROBLEM 2-3: A stick of length L0 is placed at rest in the primed frame, along the
x′ axis. Observers in the unprimed frame measure both ends of the stick at the same time t
according to unprimed clocks. Using the Lorentz transformation, find the length L ≡ (x2−x1)
of the stick in the unprimed frame, in terms of L0 and the relative frame velocity V . Here x1

and x2 are the end locations in the unprimed frame.

PROBLEM 2-4: Two clocks A and B are placed at rest in the primed frame, both on
the x′ axis, at x′A and x′B . Using the Lorentz transformation, find the difference t′A − t′B of
these clock readings when they are observed simultaneously in the unprimed frame, both at
some time t. The result shows that events which are simultaneous in one frame may not be
simultaneous in another frame.

PROBLEM 2-5: Two spaceships are approaching one another. According to observers in
our frame, (a) the left-hand ship moves to the right at (4/5)c, and the right-hand ship moves
to the left at (3/5)c. How fast is the right-hand ship moving in the frame of the left-hand
ship? (b) The left-hand ship moves to the right at speed (1 − ε)c and the right-hand ship
moves to the left at (1 − ε)c, where ε is in the range 0 < ε < 1. How fast is the right-hand
ship moving in the frame of the left-hand ship? Show that this is less than c, no matter how
small ε is.

PROBLEM 2-6: By differentiating the velocity transformation equations one can obtain
transformation laws for acceleration. Find the acceleration transformations for ax, ay, and az.

PROBLEM 2-7: Al and Bertha are identical twins. When she is 18 yrs old, Bertha travels
to a distant star at constant speed (24/25)c, turns quickly around, and returns at the same
speed. When she arrives home she is 25 yrs old. (a) How old is Al when she returns? (b) How
far away was the star in Al’s frame?

PROBLEM 2-8: A particle moves at speed 0.99c. How fast must it move to double its
momentum?



CHAPTER 2

PROBLEM 2-9: A photon of momentum pγ strikes an atomic nucleus at rest, and is
absorbed. If the mass of the final (excited) nucleus is M , calculate its velocity.

PROBLEM 2-10: Two particles make a head-on collision, stick together and stop dead.
The first particle has mass m and speed (3/5)c, and the second has mass M and speed (4/5)c.
Find M in terms of m.

PROBLEM 2-11: A particle moves in the x, y plane with velocity v = (4/5)c, at an angle
of 30◦ to the x axis. (a) Find all four components of the particle’s four-vector velocity vµ
and evaluate the invariant square of its components ηµνvµvν . (b) Find all four components of
the particle’s four-vector velocity in a frame moving to the right at velocity V = (3/5)c. (c)
Evaluate explicitly the invariant square of the components in this frame.

PROBLEM 2-12: Prove that the sign of the zeroth component of a timelike four-vector is
invariant under Lorentz transformations.

PROBLEM 2-13: (a) An unstable particle of mass m decays in time τ = 10−10 s in its
own rest frame. If its energy is E = 1000mc2 in the lab, how far (in meters) will it move
before decaying? (b) The kinetic energy of a particular newly-created particle in the laboratory
happens to equal its mass energy. If it travels a distance d before decaying, find an expression
for how long it lived in its own rest-frame.

PROBLEM 2-14: A photon of energy E = 5000 MeV is absorbed by a nucleus of mass
M0 originally at rest. Afterwards, the excited nucleus has mass M and is moving at speed
(5/13)c. (a) In units MeV/c, find the momentum of M . Then in units MeV/c2, find (b) the
mass M (c) the mass M0.

PROBLEM 2-15: The Large Hadron Collider (LHC) at CERN near Geneva, Switzerland,
accelerates protons of mass energy mc2 to an energy E � mc2. (a) In terms of mc2 and
E, write down a simple expression for the γ-factor of LHC protons. (b) The velocity of these
protons can be expressed in the form v/c = 1 − ε, where ε � 1. Derive a simple expression
for ε in terms of mc2 and E. (c) Each proton has mass energy 938 MeV and may eventually
with energy as large as 7 TeV = 7× 1012 eV. Find ε for these protons.

PROBLEM 2-16: A 1.0 kg space probe is ejected from the Moon by a powerful laser that
pushes on the probe with the constant force 1000 N. How long, according to Moon clocks,
does it take the probe to reach speed c/2?

PROBLEM 2-17: Astronomers and cosmologists use the symbol z for the redshift of distant
galaxies or quasars, where z ≡ ∆λ/λ = (λob − λem)/λem. Here λob is the wavelength of a
spectral line as observed on Earth and λem is the wavelength emitted by the distant object in
its own rest frame. (a) Show that, in terms of z, the recessional velocity of a distant quasar
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according to the Doppler formula is given by

v/c =
(1 + z)2 − 1

(1 + z)2 + 1
. (2.135)

(b) If the Lyman alpha line (λ = 121.6 nm) emitted by hydrogen atoms in a quasar is observed
on Earth to have the wavelength λ = 243.2 nm, how fast is the quasar moving away from us?

PROBLEM 2-18: A light source glows uniformly in all directions, in a frame at rest relative
to the light source. Show that if the source is moving at speed v in our frame, half of the
emitted photons are radiated into a forward cone whose half-angle is θ = cos−1(v/c). This is
called the “headlight effect”.

PROBLEM 2-19: Suppose that primed and unprimed inertial frames have relative velocity
V in the x direction. Suppose also that the transformation between them has the linear form
t = At′+Bx′, x = Ct′+Dx′, y = y′, z = z′. Using the meaning of V and the two postulates
of relativity, derive the Lorentz transformation by evaluating the four constants A, B, C, D
in terms of V .

PROBLEM 2-20: A straight stick is placed at rest in the x′, y′ plane of the primed frame,
at angle θ′ to the x′ axis. As observed in the unprimed frame, what is the angle of the stick
relative to the x axis?

PROBLEM 2-21: Show that the momentum and velocity four-vectors are both timelike,
and that the force four-vector is spacelike.

PROBLEM 2-22: We wish to show that the wave equation for light is invariant under
Lorentz transformations: i.e., , observers O and O′ would write the same equation in their
respective coordinate systems to describe light propagation. Using the chain rule of partial
differentiation, we start by noting

∂

∂t
=
∂t′

∂t

∂

∂t′
+
∂x′

∂t

∂

∂x′
+
∂y′

∂t

∂

∂y′
+
∂z′

∂t

∂

∂z′
= γ

∂

∂t′
− γβ c ∂

∂x′
. (2.136)

Similarly, we have

∂

∂x
= −γβ c ∂

∂t′
+ γ

∂

∂x′
,

∂

∂y
=

∂

∂y′
,

∂

∂z
=

∂

∂z′
. (2.137)

Using these relations, show that

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2
∂2φ

∂t2
= 0⇒ ∂2φ

∂x′2
+
∂2φ

∂y′2
+
∂2φ

∂z′2
− 1

c2
∂2φ

∂t′2
= 0, (2.138)

confirming the invariance of the wave equation under Lorentz transformations. Both observers
O and O′ then write the same wave equation — with the same speed parameter c — despite
their relative motion.
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PROBLEM 2-23: The wave equation for light is

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2
∂2φ

∂t2
= 0. (2.139)

Show that the set of all linear transformations of the spacetime coordinates that permit this
wave equation to be written as we did, correspond to (i) four possible translations in space and
time, (ii) three constant rotations of space, and (iii) three Lorentz transformations. Collectively,
these are called the Poincaré transformations of spacetime.

PROBLEM 2-24: Prove that the time order of two events is the same in all inertial frames
if and only if they can be connected by a signal traveling at or below speed c.

A Paradox : The train in the tunnel (Thanks to D. C. Petersen)
Cast of characters:

A relativistic commuter train, rest length 300 m, traveling at (4/5)c:
a dark tunnel, rest length 400 m;
the trains diligent crew;
some nefarious saboteurs.

The situation:
The train must pass through the tunnel. The saboteurs have decided to blow up the train

in the tunnel. They put photodetectors on the top of the train at the front and the back.
When either photodetector is in darkness, it sends a laser beam to a third detector on the top
of the train, located exactly midway between the front and back of the train. If this detector
sees both laser beams simultaneously it sends a signal to detonate a bomb on the train.

The paradox :
As the train is hurtling down the track at (4/5)c toward the tunnel, the engineer is informed

of the plan in detail. Not knowing any relativity, he foresees both ends of the train are soon
to be in the dark at the same time and panics. Stop the train!

His fireman, who has been reading a little relativity during breaks between shoveling coal
into the firebox is even more worried. Its even worse than you think, he tells the engineer.
Were moving at (4/5)c, so our train is only (300 m)

√
1− (4/5)2 = 180 m long. Clearly, we’ll

perish! Put on the brakes!
The brakeman, being somewhat lazy and not wanting to slow the train, has also been

reading his relativity. Dont worry, he says. When we go through the tunnel we’ll see that the
tunnel, which is, after all, moving relative to us, is only (400 m)

√
1− (4/5)2 = 240 m long.

By the time the tail end of the train gets to the tunnel, the front will already be out. The
detector won’t see both laser beams simultaneously and won’t detonate the bomb. In fact the
faster we go, the safer we’ll be. More coal!

The question: Does the train blow up or not?

PROBLEM 2-25: A particle decays into two particles of unequal mass. (a) Prove that in
the rest frame of the initial particle, it is the less-massive final particle that carries away most
of the final kinetic energy. (b) Then show that in the nonrelativistic limit, in which mass is
nearly conserved, the ratio of the final particle kinetic energies is equal to the inverse ratio of
the final particle masses.
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PROBLEM 2-26: It is possible to create antiprotons (p) by the reaction p+p→ p+p+p+p,
where one of the initial protons comes from a high-energy accelerator, and the other is at rest
in the lab. Find the threshold energy, the minimum energy of the incident proton needed to
make the reaction go. It is helpful to first explain why for this energy all of the final particles
move in the forward direction at the same velocity.

PROBLEM 2-27: A particle of mass M0 decays into two particles, with masses m1 and
m2. (a) In the rest-frame of M0 find the energy, the kinetic energy, the momentum, and the
speed of each particle, in terms of the masses and the speed of light. (b) An Ω− particle
sometimes decays into a Ξ0 hyperon and a pion, written Ω− → Ξ0 + π− . The mass energies
are Ω−: 1676 MeV; Ξ0: 1311 MeV; π−: 140 MeV. Using energy units, in the rest-frame of
the Ω− find the pions (a) total energy (b) kinetic energy (c) momentum (d) velocity, as a
multiple of c.

PROBLEM 2-28: K+ mesons can be photoproduced by the reaction γ + p → K+ + Λ
where the initial proton is at rest in the lab. From the conservation laws, discover if it is
possible for either the K+ or the Λ to be at rest in the lab, and for what photon energy (in
terms of the particle masses) this could happen. The particle mass-energies are (in MeV) p :
938.3, K+: 493.7, Λ: 1115.7.

PROBLEM 2-29: The tachyon, a hypothetical particle that travels faster than light, has
imaginary energy and momentum using the traditional formulas. (a) Show that these quantities
can be made real by assigning tachyons the imaginary mass im, where i =

√
−1 and m is real.

How then do the resulting real momentum and energy depend upon velocity? In terms of m
and c, what is the quantity E2−p2c2 for tachyons? Now suppose an ordinary particle of mass
M at rest decays into an ordinary particle of mass m and an unseen particle that may or may
not be a tachyon. Knowing M and m, show how you could tell from measurements of the
energy of the final ordinary particle m, whether the unseen particle is a tachyon, a massless
particle, or an ordinary massive particle. Assume that energy and momentum are conserved.

PROBLEM 2-30: (a) Prove that two colliding particles cannot transform into a single
photon. (b) Explain why a photon that strikes a free electron cannot be absorbed: γ+e− → e−.

PROBLEM 2-31: (a) Show that the components of the net force acting on a particle in
the usual primed and unprimed frames are related by

Fx =
Fx′ + V/c2(v′ · F ′)

1 + vx′V/c2
, Fy =

Fy′
√

1− V 2/c2

1 + vx′V/c2
, Fz =

Fz′
√

1− V 2/c2

1 + vx′V/c2
(2.140)

where v′ · F ′ = vx′Fx′ + vy′Fy′ + vz′Fz′ . (b) Then show that if the motion is entirely in the
x direction, it follows that Fx = Fx′ , just as it would be if the Galilean transformation were
valid.

PROBLEM 2-32: Prove that the four-vector force is spacelike.
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PROBLEM 2-33: The J/ψ meson was discovered in the 1970s at Brookhaven National
Laboratory and at the Stanford Linear Accelerator Center, using different reactions. SLAC used
e− + e+ → J/ψ, in which the initial electron and positron had equal but opposite velocities,
and each had total energy E = 1.55 GeV. (a) What is the mass-energy of the J/ψ meson? (b)
What is the velocity of the original electron, expressed in the form v/c = 1− ε? (c) Suppose
the SLAC researchers had planned to create the meson by firing a positron at an electron at
rest. What must the total energy of the positron have been in that case?

PROBLEM 2-34: A team of particle physicists wants to create a new particle Q in the
collision p + p → Q . Each initial proton has mass m, and particle Q has a mass M that is
unknown, except one expects that M � m. Suppose that one or both of the protons can be
accelerated up to energy E0. (a) Show that if both protons achieve energy E0 in a colliding-
beam experiment, the largest mass energy that can be created is Mc2 = 2E0. That is, in a
colliding-beam experiment, Mc2 increases linearly with E0. (b) Show that if only one of the
protons achieves E0, while the other is a stationary target, the largest mass energy that can be
created is Mc2 ∼=

√
2mc2E0 . That is, in a stationary-target experiment, Mc2 increases only

as the square root of E0. (c) If E0 = 72mc2, find the maximum mass that can be created in
each type of experiment.

PROBLEM 2-35: Consider an observer O′ traveling in the usual arrangement at speed V
relative to O along their mutual x′ and x axes. The two observers are receeding. O′ shines a
flashlight of frequency ν′ at an angle θ′ to her x′ axis. The light ray is seen by O at an angle
θ for his x axis and at frequency ν. Show that

ν = γV

(
1− V

c
cos θ′

)
ν′ (2.141)

and

cos θ =
cos θ′ − v

c

1− v
c cos θ′

. (2.142)

PROBLEM 2-36: In the text, we derived the Doppler formulae for light. Using the same
strategy, find the relativistic Doppler formulae for waves traveling at a speed v 6= c. For
example, the waves may be sound waves in some very very stiff material whose sound speed
is a few percent that of c.

PROBLEM 2-37: Ultra high-energy cosmic rays consist primarily of protons that may have
originated in far-away active galactic nuclei. As they zip through space they will inevitably
encounter low-energy photons in the cosmic background radiation (CBR) that was set loose
in the early universe. CBR photons have a wide range of wavelengths, peaked at approxi-
mately 1 mm. These photons have energies that are way below the threshold to cause pion
photoproduction off protons that are at rest in the CM frame of our galaxy, but can have
very high energies in the rest frame of the cosmic-ray protons themselves. If these energies
exceed the threshold, pions will be produced and the proton energy in the frame of our galaxy
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will be reduced, leading to an upper limit in the cosmic-ray proton energies we can observe.
This is called the GZK limit (for the physicists Greisen, Kuzmin, and Zatsepin who predicted
it). Estimate the GZK limit (in eV) by pretending that the CBR consists entirely of photons
with wavelength 1 mm in our galactic frame of reference. Hint: Let the unprimed frame be
the rest frame of the cosmic-ray proton and the primed frame be the frame of our galaxy.
Then show that the gamma factor γ = (1 − V 2/c2)−1/2 between these two frames is given
by γ = E′p/mpc

2 ∼= Eγ/(2E
′
γ) where Eγ and E′γ are the photon energies in the unprimed

and primed frames. The actual result of GZK was 6× 1019 eV. Nevertheless, cosmic-ray pro-
tons with energies of up to 3 × 1020 eV have apparently been observed. The reason for the
discrepancy is unclear.

PROBLEM 2-38: An algebraic expression is said to be Lorentz covariant if its form
is the same in all inertial frames: the expression differs in two inertial frames O and O′
only by putting prime marks on the coordinate labels. For example, AµηµνBν = K is a
Lorentz covariant expression, where Aµ and Bν are four-vectors and K a constant. Under
the Lorentz transformation, AµηµνBν = Aµ′Λµµ′ηµνBν′Λν ν′ = Aµ′ηµ′ν′Bν′ = K, where we
used ηµ′ν′ = Λµµ′ηµνΛν ν′ . Because the indices come matched in pairs across a metric factor
ηµν , the expression preserves its structural form. The quantity is also a Lorentz scalar:
its value is unchanged under a Lorentz transformation. Which of the following quantities are
Lorentz scalars, given that K is a constant and any quantity with a single superscript is a
four-vector? (a) KAµηµν (b) Cµ = Dµ(AληλνBν) . (c) KAµηµνBληλσDνFσ

PROBLEM 2-39:
Consider a Lorentz covariant expression that is not a Lorentz scalar, Cλ = Kλh(AµηµνBν),

where h is any function of the quantity in parentheses. Here quantities with a single sub-
script are four-vectors. Under a Lorentz transformation, AµηµνBν is Lorentz covariant and
is also a Lorentz scalar. Hence, its form and value are unchanged; which means the function
h(AµηµνBν) is unchanged in form or value as well. Kµ on the other hand is a four-vector;
this means that it transforms as Kµ = Λµµ′Kµ′ . The right-hand side of the equation for Cλ
transforms as a four-vector as whole, which implies that Cλ also transforms as a four-vector
and observer O′ would write Cλ′ = Kλ′h(Aµ′ηµ′ν′Bν′). This quantity is said to be a Lorentz
vector (instead of a scalar) since it transforms as a four-vector: its components change, but
through the well-defined prescription for a four-vector. Which of the following quantities are
Lorentz vectors, given that K is a Lorentz scalar and any quantity with a single subscript is a
Lorentz vector? (a) Kηµν (b) Cλ = DµAληµνBν . (c) KAµηµνBληλσDνFσ

PROBLEM 2-40:
The concept of Lorentz covariance is important because it allows one to quickly determine

the transformation properties of expressions under change of inertial reference frames. The
principle of relativity requires that all laws of physics are unchanged as seen by different inertial
observers. Hence, we need to insure that expressions reflecting statements of a law of physics
are Lorentz covariant: they retain structural form under Lorentz transformations. A useful
application of this comes from the second modified law of dynamics

fµ =
dpµ
dτ

. (2.143)
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Forces that we insert on the left hand side of this equation must be Lorentz covariant expres-
sions that transform as four-vectors. This insures that observer O′ would simply write

fµ′ =
dpµ′

dτ
. (2.144)

For example, we could write fµ = Kµ with a constant four-vector Kµ. (a) Is a “relativistic
spring law” fµ = −(0, kx) for some constant k, a Lorentz covariant expression? (b) What
about a modified spring law fµ = −Kxµ = −k(c t,x) ? (c) What about Newtonian gravity
F = −(k/r3)r ?

PROBLEM 2-41: Leading clocks lag. Minkowski diagrams of primed and unprimed frames
are shown in the figure, corresponding to a relative velocity V = (3/5)c. (a) Place two dots on
it indicating the spacetime positions of two clocks at rest in the primed frame (and synchronized
in that frame) when each reads the same time (say, 1:00 pm). Note that these dots must
both lie on a line that is parallel to the x′ axis, since all points on such a line have the same
value of t′. (b) Show from the diagram that these clocks are not synchronized in the unprimed
frame. (c) Then show that leading clocks lag; that is, that the clock with the larger value of
x (which is leading the other clock in space as they move together in the unprimed frame)
lags the other clock in time. (d) Now place two additional dots on the diagram, indicating
the events when two clocks at rest in the unprimed frame (and synchronized in that frame)
both read some definite time (say, 1:00 pm). Show from the diagram that these two clocks
are not synchronized in the primed frame. (e) Then show that according to observers in the
primed frame, the leading clock lags. Hint: As seen in the primed frame, is it the clock with
the larger value of x′ or the smaller value of x′ that leads the other clock as they move along
together?

PROBLEM 2-42: Show that the most general Lorentz transformation can be written as a
four by four matrix Λ̂ satisfying

Λ̂t · η̂ · Λ̂ = η̂ (2.145)

and

|Λ̂| = 1 . (2.146)

Since a Lorentz transformation is by definition a linear transformation of time and space that
preserves the speed of light, you simply need to show that these two properties as necessary
and sufficient for this. Note also that reflections get ruled out by the second condition by
choice.
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