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For each problem, please account for all ND degrees of freedom, where N is the number
of particles and D the number of dimensions.

Problem 1 – Really practical! A cart of mass M
glides without friction on a smooth horizontal surface.
Suspended from the cart at a frictionless pivot by a
massless rigid rod of length ℓ is a mass m, which is free
to move in the plane. Find the eigenfrequencies and de-
scribe the corresponding normal modes. ℓ

m
θ

M

Solution: �ere is no force on the system in the horizontal (x) direction, so horizontal mo-
mentum is conserved. Because the surface is �at and horizontal, there is no restoring force
on the cart should it be set in motion at uniform horizontal velocity along with the pendu-
lum. One “normal mode,” therefore, consists in translation of the center of mass at steady
speed. It has zero frequency: it never comes back. If you think this is cheap, imagine what
should happen if the cart rolls in a very weakly curved bowl. It could roll up the side of the
bowl a little bit, turn around, and slide back down. �is could take as long as we like, if we
make the bowl shallower and shallower. In the limit that the bowl goes �at, the period goes
to in�nity.

�e other normal mode has the cart moving le� when the bob moves right, keeping the
center of mass �xed. Let x be the position of the cart with respect to the equilibrium position.
�e position of the mass is then

r = (x + ℓ sin θ)x̂ + ℓ cos θŷ (1)

�e position of the center of mass in the horizontal direction is

m(x + ℓ sin θ) +Mx = 0 Ô⇒ x = −
mℓ sin θ
m +M

(2)
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�e kinetic energy of the cart is therefore

Tcart =
M
2

ẋ2
=

M
2

(−
mℓθ̇ cos θ

m +M
)

2

Now θ is a small quantity, and so is θ̇. Since we are expanding only to quadratic order, we
may approximate cos θ ≈ 1, since there are already two factors of the small quantity θ from
the θ̇2 term. �erefore,

Tcart =
m2Mℓ2θ̇2

2(m +M)2

We can calculate the kinetic energy of the pendulum using its position in Cartesians
given by Eq. (1). But �rst, eliminate x using Eq. (2):

r = ℓ sin θ (1 − m
m +M

) x̂ + ℓ cos θŷ = ℓ sin θ M
m +M

x̂ + ℓ cos θŷ

v = ℓθ̇ cos θ (
M

m +M
) x̂ − ℓθ̇ sin θŷ

�e kinetic energy of the pendulum is therefore

Tpend =
m
2

ℓ2θ̇2
(

M
m +M

)
2

where we have dropped all terms higher order than θ̇2. �e total kinetic energy is thus

T =
mMℓ2θ̇2

2
m +M

(m +M)2 =
1
2
(

mMℓ2

m +M
) θ̇2 (3)

�e potential energy is

V = mgℓ(1 − cos θ) ≈ m
2

gℓθ2

where we approximate through second order in θ. �e total energy of the system is thus

E = T + V =
1
2
(

mMℓ2

m +M
) θ̇2
+

1
2
(mgℓ) θ2

�e frequency of small oscillations is therefore

ω =

¿
Á
ÁÀ

mgℓ
mMℓ2

m+M
=

√
g(m +M)

ℓM
=

√
g
ℓ
(1 + m

M
)

Does this make sense? Suppose that M ≫ m. �e cart just sits there and the pendulum
swings, so its frequency should be

√
g/ℓ. �at checks. As mentioned previously, this mode

corresponds to motion of the bob and cart in opposition.

Peter N. Saeta 2 Physics 111



Problem 2 A thin hoop of radius R and mass M oscillates in its own plane with one point
of the hoop �xed. Attached to the hoop is a small mass m constrained to move (without
friction) along the hoop. Consider only small oscillations.

(a) Show that the eigenfrequencies are

ω1 =

√

(1 + m
M

)
g
R

and ω2 =

√ g
2R

(b) Describe the normal mode corresponding to each eigenfrequency.
(c) Find the initial conditions that produce motion in each normal mode without exciting

the other.

Solution:

As discussed in the notes, our strategy will be to �nd the
mass and spring matrices, M and A, based on the expres-
sions for kinetic and potential energy for the system. Let
the angular displacement of the hoop be θ, so that its po-
tential energy is

Uhoop = MgR(1 − cos θ) ≈ MgR θ2

2

when expanded to second order in θ, since the center of
mass of the hoop is at R from the pivot. �e moment of
inertia of the hoop about its center is MR2, as all the mass is
equidistant from the center. Using the parallel axis theorem,
we �nd that the kinetic energy for rotation about a point on
the perimeter is

θ

ϕ

R

m

M

Thoop =
1
2
(MR2

+MR2
)θ̇2

= MR2θ̇2

Let ϕ represent the angular position of the bead with respect to the vertical. �en the bead’s
motion is like that of the double pendulum, with

Ubead = mgR(2 − cos θ − cos ϕ) ≈ mgR
2

(θ2
+ ϕ2

)

Tbead =
m
2

R2 [θ̇2
+ ϕ̇2
+ 2θ̇ϕ̇ cos(θ − ϕ)] ≈ mR2

2
(θ̇2
+ ϕ̇2
+ 2θ̇ϕ̇)

Combining the approximations for bead and hoop gives

U =
MgR

2
(θ2

(1 + µ) + µϕ2
)

T =
MR2

2
[θ̇2

(2 + µ) + 2µθ̇ϕ̇ + µϕ̇2]
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where I have de�ned µ ≡ m/M. We can now identify the two matrices,

A = MgR (
1 + µ 0

0 µ) and M = MR2
(

2 + µ µ
µ µ)

�e normal modes satisfy det(A − ω2M) = 0. De�ne ω2
0 = g/R and let x = ω2/ω2

0. �en we
must have

∣
1 + µ − (2 + µ)x −µx

−µx µ − µx∣ = 0

or
[1 + µ − (2 + µ)x](1 − x)µ − µ2x2

= 0

Discarding a common factor of µ, we get the quadratic equation

2x2
− x(3 + 2µ) + (1 + µ) = 0 Ô⇒ x =

3 + 2µ ± (1 + 2µ)
4

So, the eigenvalues of x are x+ = 1 + µ and x− = 1/2, meaning that the eigenfrequencies are

ω− =
ω0
√

2
=

√ g
2R

and ω+ = ω0
√

1 +m/M =

√
g
R

(1 + m
M

)

(b) We should anticipate normal modes in which the bead and hoop swing in the same
sense, which should have lower frequency because they function like a long pendulum, and
in which they move in opposition. To con�rm this intuition, substitute the eigenvalues in
turn into the matrix A − ω2M and solve for the eigenvector:

x− ∶ (
1 + µ − (2 + µ)/2 −µ/2

−µ/2 µ/2 )(
θ−
ϕ−

) = 0 (
µ/2 −µ/2
−µ/2 µ/2 )(

θ−
ϕ−

) = 0 A− =
1

√
2
(

1
1)

x+ ∶ (
1 + µ − (2 + µ)(1 + µ) −µ(1 + µ)

−µ(1 + µ) µ[1 − (1 + µ)])(
θ+
ϕ+

) = 0

(
(1 + µ)(−1 − µ) −µ(1 + µ)
−µ(1 + µ) µ2 )(

θ+
ϕ+

) = 0 A+ = c ( −µ
1 + µ)

where c is a normalization constant. Sure enough, in the lower-frequency mode the hoop
and bead move in the same direction; in the higher-frequency mode, they move in opposite
directions. Furthermore, in the limit that the hoop is very massive compared to the bead
(µ ≪ 1), the hoop is approximately �xed and the bead does all the moving in the higher-
frequency mode, which then has frequency

√
g
R , appropriate for a pendulum of length R.

(c) What initial conditions produce motion in each normal mode? To stimulate the low-
frequency mode, start the system at rest with θ = ϕ. To activate the high-frequency mode,
start from rest with ϕ = −(1 + µ−1)θ. Other conditions with nonzero generalized velocities
are possible, too.
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Problem 3 Consider a one-dimensional model of a solid consisting of alternating atoms of
two types (e.g., Na and Cl). Assume that the mass of one kind of atom is m and the other
is M, and let the spring constant linking the masses be α (we will assume all the springs are
identical and consider only longitudinal motion). Put the origin at the zeroth mass m, and let
the equilibrium positions of the �rst M and second m be a/2 and a to the right, respectively.
To avoid surface e�ects, assume that there are N atoms of each type, where N ⋙ 1, and use
wrap-around boundary conditions. �at is, the (N − 1)st mass M links to the (N − 1)st mass
m on its le� and to the zeroth mass m on its right.

(a) Solve for the eigenfrequencies and plot their spectrum.
(b) Describe the normal modes.
(c) What is the speed of sound in the crystal?

Solution:

A portion of the very long chain is
shown in the �gure. Let x j be the dis-
placement of the jth atom of mass m
from its equilibrium position at a j and
y j be the displacement of the jth atom
of mass M from its equilibrium posi-
tion at a( j + 1/2).
�e equations of motion for the jth
mass of each type are

m

0 a/2 3a/2 2a 5a/2a

α α α α α αM m M m M

xo yo x1 y1 x2 y2

mẍ j = α[(y j − x j) − (x j − y j−1)] (4)
M ÿ j = α[(x j − y j) − (y j − x j+1)] (5)

We now look for traveling wave solutions (roughly) of the form e i(kx−ωt), making the Ansatz

x j = Ae i(ka j−ωt) (6)

y j = Be i[k(a+1/2) j−ωt] (7)

Substituting into the equations of motion, and using the shorthand ϕ = ka j − ωt and ψ =

k(a + 1/2) j − ωt, we get

−mω2Ae iϕ
= α(−2Ae iϕ

+ Be iϕ+ika/2
+ Be iϕ−ika/2

)

mω2
= 2α (1 − B

A
cos ka/2) (8)

−Mω2Be iψ
= α(−2Be iψ

+ Ae iψ−ika/2
+ Ae iψ+ika/2

)

Mω2
= 2α (1 − A

B
cos ka/2) (9)

Physics 111 5 Peter N. Saeta



Let the mass ratio be µ = m/M, the amplitude ratio be ρ = A/B, and divide Eq. (8) by Eq. (9)
to get

µ =
m
M

=
1 − ρ−1 cos ka/2
1 − ρ cos ka/2

Solving for ρ yields

ρ =
A
B
=

µ − 1 ∓
√

(µ − 1)2 + 4µ cos2 ka/2
2µ cos ka/2

(10)

(Note that I have used ∓ with malice of forethought, so that the sign will come out ± in the
expression for the eigenfrequencies.) Substituting this expression for ρ into either Eq. (8) or
Eq. (9) allows us to solve for the eigenfrequencies

ω2
=

α
m

[(1 + µ) ±
√

(1 − µ)2 + 4µ cos2 ka/2] (11)

Time for a sanity check. If µ = 1, the atoms are identical and we should recover the rela-
tionship derived in class, except that now the separation between nearest neighbors is a/2
instead of a. If µ = 1, Eq. (11) becomes

ω2
=

α
m

(2 ± 2 cos ka/2)

If we take the negative sign, the term in parentheses is 4 sin2 ka/4, which does indeed agree
with our previous result.

Before plotting, let’s look for the sound speed. �is is the ratio of ω/k for small values of ω
and k. For small values of k we can approximate the cosine term as

cos2 ka
2

≈ (1 − 1
2!

k2a2

4
+⋯)

2
≈ 1 − k2a2

4

where we have dropped terms beyond second order in k. �erefore the radical simpli�es to
√

1 − 2µ + µ2 + 4µ − µk2a2 =
√

(1 + µ)2 − µk2a2

Remember that k is small, so we can use the binomial approximation to approximate further
that

√
(1 + µ)2 − µk2a2 = (1 + µ)

¿
Á
ÁÀ1 − µ (

ka
1 + µ

)

2

≈ (1 + µ) [1 − µ
2
(

ka
1 + µ

)

2

]

Substituting into Eq. (11) gives

ω2
=

α(1 + µ)
m

{1 ± [1 − µ
2
(

ka
1 + µ

)

2

]} (12)
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If we take the positive sign, then we can neglect the term with the small k in it, getting

ω2
=

2α(1 + µ)
m

= 2α (
1
m
+

1
M

)

Notice that it is symmetric under the exchange m ↔ M, as it must be, since the speed of
sound clearly cannot depend on which label we assign to which mass. It also has no k de-
pendence. �at’s interesting. If ω > 0 as k → 0, I suppose the wave speed diverges! Let’s
come back to this little problem.

Taking now the negative sign Eq. (12) we get

ω2
=

α(1 + µ)µ
2m

(
ka

1 + µ
)

2

=
α

2M
k2a2

1 + µ

ω =
ka
2

√ 2α
m +M

(13)

�erefore, the speed of sound is

υ =
ω
k
= a

√
α

2(m +M)

0.0 0.2 0.4 0.6 0.8 1.0
0

1
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Discussion

�e �gure above right shows the dispersion of a one-dimensional chain of atoms of alternat-
ing character as a function of ka/2 for three di�erent values of µ = m/M: µ = 1 (blue), µ = 2
(red), and µ = 3 (brown). �e curves have been scaled to have the same slope in the lower
branch (called the acoustic phonon branch). When m = M, we reduce to the result derived
in class for a chain of identical atoms. �e upper curve corresponds to folding back the sine
curve so that the peak occurs at k = 0, not k = π/a. �is arises because the period is a/2 in
the model of this problem, but a in the one we did before.
Something interesting happens when the masses are di�erent, however. A gap opens up at
the right edge of the graph (called the edge of the Brillouin zone) and the upper branch (the
optical phonon branch) becomes disconnected from the acoustical phonon branch.
To understand what is going on here, let’s return to Eq. (10) to see how the various atoms are
moving. First take k → 0, which sends cos ka/2 to 1. �en

A
B
= ρ =

(µ − 1) ∓ (µ + 1)
2µ

=

⎧⎪⎪
⎨
⎪⎪⎩

1 lower sign, acoustic branch
−M

m upper sign, optical branch

So, on the acoustic branch the neighboring atoms move in the same direction, while on
the optical branch they move in opposition. For larger values of k the atoms move in a
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compressional wave of wavelength λ = 2π/k. All the way along the acoustic branch the
atoms in a unit cell (one m and the adjacent M) the atoms move in the same direction, while
along the optical branch they move in opposite directions.
At the edge of the Brillouin zone, cos ka/2→ 0. You can show that

ρ →
⎧⎪⎪
⎨
⎪⎪⎩

µ−1
µ cos ka/2 → B = 0 lower sign, acoustic branch for µ > 1
cos ka/2

µ−1 → A = 0 upper sign, optical branch for µ > 1

�at is, when µ > 1 or m > M, the acoustic branch has the lighter atoms M at rest and the
heavier atoms m vibrating in opposition to each nearest-neighbor m atom. On the optical
branch, it is the heavier atoms at rest and the lighter atoms vibrating in opposition.

Problem 4 �e atoms of a �ve-atom linear molecule of form ABABA are linked with identi-
cal springs of constant α. �e mass of the A molecules is m, and the mass of the B molecules
is M. We consider in this problem only the longitudinal motion of the atoms (the motion
along the line joining their centers).

(a) Without calculating anything, describe the longitudinal normal modes.
(b) If qi represents the displacement of the ith atom (counting from the le�) from its equi-

librium position, transform coordinates to

η1 ≡
q1 + q5
√

2
, η5 ≡

q1 − q5
√

2
, η2 ≡

q2 + q4
√

2
, η4 ≡

q2 − q4
√

2
, η3 ≡ q3

In terms of these variables, develop the mass matrix mi j and the spring matrix Ai j.
(c) Solve for the eigenfrequencies (using Mathematica if you wish).

Solution:

�e molecule is pictured at right. Let’s see if we
can identify the normal modes before calculat-
ing much of anything. Two modes will have the
middle atom at rest. In one, atoms 1 and 2 move
le� while atoms 4 and 5 move symmetrically to
the right. In the other, the outside atoms 1 and
5 move in while the inner atoms 2 and 4 move
outward. In two other modes the middle atom
vibrates. In one, atoms 2, 3, and 4 move right
while the outer atoms move le�; in the other,
atoms 1, 3, and 5 move right while atoms 2 and
4 move le�.

m α α α αM m M m

q1 q2 q3 q4 q5
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Let q j be the displacement of the jth atom of mass m j from its equilibrium position. �e
kinetic energy is

T =
m
2
(q̇2

1 + q̇2
3 + q̇2

5) +
M
2
(q̇2

2 + q̇2
4)

and the potential energy is

V =
α
2
[(q2 − q1)

2
+ (q3 − q2)

2
+ (q4 − q3)

2
+ (q5 − q4)

2
]

Rewriting these in terms of the coordinates η j de�ned in the problem statement gives

T =
m
2
(η̇2

1 + η̇2
3 + η̇2

5) +
M
2
(η̇2

2 + η̇2
4) (14)

V =
α
2
(η2

1 − 2η1η2 + 2η2
2 − 2

√
2η2η3 + 2η2

3 + 2η2
4 − 2η4η5 + η2

5) (15)

�e mass and spring-constant matrices are therefore

m jk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m
M

m
M

m

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and a jk = α

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0
−1 2 −

√
2

0 −
√

2 2
2 −1
−1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)

�e 5× 5 matrices divide into an upper 3× 3 and a lower 2×2 matrix. Starting with the upper
3 × 3,

RRRRRRRRRRRRRR

α −mω2 −α 0
−α 2α −Mω2 −

√
2α

0 −
√

2α 2α −mω2

RRRRRRRRRRRRRR

= 0

Divide through by α, let X = mω2/α = ω2/ω2
0, where ω2

0 ≡ α/m, and let µ = M/m. �e
determinant is then

RRRRRRRRRRRRRR

1 − X −1 0
−1 2 − µX −

√
2

0 −
√

2 2 − X

RRRRRRRRRRRRRR

= −X[µX2
− (3µ + 2)X + (2µ + 3)] = 0

One eigenvalue is X = 0, so ω2 = 0, which corresponds to a center-of-mass translation. If
this is so, then all the atoms should be the same displacement. To check, substitute X = 0 in
the (full) matrix and solve for the eigenvector. Since X = 0 multiplies the matrix m jk , we are
le� with the matrix a jk :

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0
−1 2 −

√
2

0 −
√

2 2
2 −1
−1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a
b
c
d
e

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0
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�e �rst row implies a = b, which means that the amplitude of η1 is equal to the amplitude
of η2; the second that c = a/

√
2. �e ��h that d = e, and the fourth therefore that d = e = 0.

Now, a is the coe�cient of η1 = (q1 + q5)/
√

2, b is the coe�cient of η2 = (q2 + q4)/
√

2, and
η3 = q3. �us, all the atoms undergo the same displacement in the mode with ω = 0, as we
expected.
�e other two are solutions of the quadratic equation,

X =
ω2

ω2
0
=

3µ + 2 ±
√

9µ2 + 12µ + 4 − 4µ(2µ + 3)
2µ

=
3µ + 2 ±

√
µ2 + 4

2µ
(17)

Since these involve motion of η1, η2, and η3, they are the modes with η3 ≠ 0, as may be
con�rmed by substituting these values into the matrix and solving for the eigenvectors. �ey
are the second pair mentioned at the beginning. You may con�rm that the higher-frequency
mode (the plus sign in Eq. (17)) corresponds to vibration in which the atoms of mass m move
le� while those of mass M move right, while the lower-frequency mode has the three middle
atoms moving right while the outer ones move le�.
Returning to the 2 × 2 system, we have

∣
2 − µX −1
−1 1 − X∣ = 2 + µX2

− X(2 + µ) − 1 = 0

with solution

X =
ω2

ω2
0
=

2 + µ ±
√

µ2 + 4µ + 4 − 4µ
2µ

=
2 + µ ±

√
µ2 + 4

2µ

In these modes η1 = η2 = η3 = 0. Since η3 = 0, the middle atom is not moving. �e
lower-frequency mode has atoms 1 and 2 moving le� while atoms 4 and 5 move right; the
higher-frequency mode has atoms 1 and 5 moving in while atoms 2 and 4 move out.
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