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Problem 1 – A Bowl for cherries A particle of mass m slides without friction inside a
spherical bowl of radius R. Using spherical coordinates, write down the Lagrangian. Deduce
the equations of motion. Note carefully that you may neglect the size of the particle and you
need not solve the equations of motion!

Solution: �e velocity in spherical coordinates is

v = ṙr̂ + rθ̇ θ̂ + r sin θϕ̇ϕ̂

so the kinetic energy is
T = 1

2
mR2(θ̇2 + sin2 θ ϕ̇2)

and the potential energy is U = mgz = mgR(1 − cos θ), where I have taken θ = 0 at the
bottom of the bowl.�erefore,

L = 1
2

mR2(θ̇2 + sin2 θ ϕ̇2) +mgR(cos θ − 1)

�e ϕ equation of motion is simple:

d
dt

(
∂L
∂ϕ̇

) −
∂L
∂ϕ
= 0 Ô⇒ mR2 sin2 θ ϕ̇ = pϕ

= constant

�e equation for θ is more complicated:

d
dt

(
∂L
∂θ̇

) −
∂L
∂θ
= 0 Ô⇒ mR2 sin θ cos θ ϕ̇2 −mgR sin θ − d

dt
(mR2θ̇) = 0

Dividing through by −mR2 we get

θ̈ + g
R
sin θ − sin θ cos θ ϕ̇2 = 0

θ̈ + g
R
sin θ − (pϕ)2

m2R4
cot θ csc2 θ = 0
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Problem 2 – Loop the loop A sphere of massm and radius a rolls without slipping inside
a semicircular track of radius R that occupies a vertical plane. Let ϕ represent the angle of
rotation of the sphere, and let θ measure the angle between the center of the semicircle and
the center of the sphere, with respect to the vertical. �at is, at θ = 0, the sphere is at the
bottom of the track.

(a) Carefully deduce the equation of constraint relating θ and ϕ. Use a large, clear diagram
to clarify the argument. Hint: the equation is not R∆θ = −a∆ϕ.

(b) Noting that the rotational kinetic energy of the sphere may be expressed 1
2 kma2ϕ̇2,

where the constant k depends on the radial dependence of the mass density (and is 2/5
for a uniform distribution), and that the total kinetic energy is the sumof the rotational
kinetic energy and the translation kinetic energy of the sphere’s center of mass, write
down the Lagrangian.

(c) Use the constraint equation to eliminate ϕ from L.
(d) Derive the equation of motion.
(e) Calculate the period of small oscillations about the bottom of the track by considering
small displacements from equilibrium.

Solution:

θ

θ
ϕ

s

s

Figure 1: As the sphere of radius a rolls along the surface of the track, the arc length along the track is
equal to the arc length along the surface of the sphere.

(a) Rolling without slipping means that the distance along the bowl, s = Rθ is equal to the
distance along the surface of the sphere, which is s = a(−ϕ + θ), as illustrated in Fig. 1. As-
suming that both θ and ϕ use the same counterclockwise direction as positive, as θ increases,
ϕ decreases, which is why I have inserted the minus sign. Equating the two expressions for
s, we get −ϕ = (R/a − 1)θ.
(b)�e center of the sphere travels on a circle of radius R − a, so the translational kinetic
energy is 1

2m(R − a)2θ̇2. �e rotational kinetic energy is 1
2 kma2ϕ̇2, and the gravitational
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potential energy is mg(R − a)(1 − cos θ). Putting these together we have

L = 1
2

m(R − a)2θ̇2 + 1
2

mka2ϕ̇2 −mg(R − a)(1 − cos θ)

(c) Using the constraint equation to eliminate ϕ̇, we get

L = 1
2

m(R − a)2θ̇2 + 1
2

mka2 (R − a
a

)
2

θ̇2 −mg(R − a)(1 − cos θ)

=
1
2

m(1 + k)(R − a)2θ̇2 −mg(R − a)(1 − cos θ)

(d)

d
dt

(
∂L
∂θ̇

) −
∂L
∂θ

Ô⇒ −mg(R − a) sin θ − d
dt

(m(1 + k)(R − a)2θ̇) = 0

θ̈ + g
(1 + k)(R − a)

sin θ = 0

For small oscillations, we may approximate sin θ ≈ θ, giving the simple harmonic oscillator
equation,

θ̈ + ω2θ = 0

where ω =
√

g/[(1 + k)(R − a)].�erefore, the period of small oscillations is

P = 2π
√

(1 + k)(R − a)/g

Problem 3 – Bead on Hoop Forced to Rotate, Part I A bead of
mass m is placed on a vertically oriented circular hoop of radius R
which is forced to rotate with constant angular velocity ω about a
vertical axis through its center, as shown.

(a) Using angle θ up from the bottom as the single generalized co-
ordinate, write down the kinetic energy of the bead. Remem-
ber that it has motion due to the forced rotation of the hoop
as well as motion due to changing θ.

(b) Find the potential energy of the bead.
(c) Find the bead’s equation of motion using Lagrange’s equation.
(d) Is its energy conserved? Why or why not?
(e) Find its Hamiltonian. Is H conserved? Why or why not?
(f) Is E = H? Why or why not?

θ

ω
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Solution: [Note that this problem is written from the (traditional) perspective that the en-
ergy is E = T + U , not the perspective of Helliwell & Sahakian, which is that the energy is
the Hamiltonian.] In spherical coordinates the bead’s velocity is

ṙ = ṙr̂ + rθ̇ θ̂ + r sin θϕ̇ϕ̂

but in this case r = R is a constant and ϕ̇ = ω, which is also a constant. So, the kinetic energy
is

T = m
2
(R2θ̇2 + R2ω2 sin2 θ)

and the potential energy is
U = −mgR cos θ

measured from the center of the hoop.�us, the Lagrangian is

L = T −U = mR2

2
(θ̇2 + ω2 sin2 θ) +mgR cos θ

Lagrange’s equation is

d
dt

(
∂L
∂θ̇

) −
∂L
∂θ
= 0 = mR2(θ̈) − (mR2ω2 sin θ cos θ −mgR sin θ)

which we can simplify by dividing through by mR2 to get the equation of motion

θ̈ + g
R
sin θ − ω2 sin θ cos θ = 0

(d) Energy (meaning the sum of the kinetic and potential energy) is not conserved because
the hoop is forced to turn at a steady rate and can therefore work on the bead (or be worked
on by the bead). More explicitly, the position of the bead is given in Cartesians by

r = R sin θ cosωt x̂ + R sin θ sinωt ŷ − R cos θ ẑ (1)

which is an explicit function of the time t.�erefore, E = T +U is not conserved.
(e)�e Hamiltonian is given by

H = θ̇ ∂L
∂θ̇
− L = θ̇ mR2θ̇ − mR2

2
(θ̇2 + ω2 sin2 θ) −mgR cos θ

=
mR2

2
(θ̇2 − ω2 sin2 θ) −mgR cos θ

It is a constant of the motion, since

dH
dt
= −

∂L
∂t
= 0

(f)�e Hamiltonian, which is conserved, is not equal to T + U , which is not conserved,
since this requires that the equation of transformation between generalized and Cartesian
coordinates, Eq. (1), have no explicit time dependence.
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Problem 4 – Bead on Hoop Forced to Rotate, Part II As in the previous problem, a bead
ofmassm is placed on a vertically oriented circular hoop of radius R = 100.000mmwhich is
forced to rotate with constant angular velocity 2π f about its center. Take g = 9.800000m/s2.
Note: Mathematica hints are posted on theMathematica page of the course web site.

(a)�e bead is a�xed to the hoop at θ = π/4, and the hoop is made to rotate at f =
2.00000 Hz. If at time t = 0 the wax holding the bead to the hoop is �ash-melted and
the bead slides freely, at what time will the bead reach its greatest elevation (greatest
value of θ) for the �rst time? What is the greatest value of θ it attains?

(b) Find the amplitude and period of the motion as a function of the angle of release, θ0
for f = 2.000000 Hz, with θ going between 5○ and 175○. In particular, give values at
both 5○ and 175○, and make a plot of the period and amplitude over the whole range.
Comment brie�y on anything unusual you notice in the behavior of the system.

Solution: See the end of the document.
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Bead on a Hoop
Peter N. Saeta, 21 September 2009

A circular hoop of negligible mass is made to rotate about a vertical axis through its center at constant angular velocity
w = 2 p f . A small bead slides without friction along the hoop. Solve for the motion of the bead. 

Revised, 23 September 2011

Graphics
Although not strictly necessary, it useful to prepare a graphical representation of the problem to see if the solution
"looks right." In this case, we need to take care that the volume of the three-dimensional representation is held fixed
and that the bead doesn't get cut off when it approaches the edge of the box. I'll make the bead have a radius one tenth
the hoop radius, which I take to be unity. The PlotBead function takes a list of the two angles, {q, f}, as its argument
and produces a graphic showing the hoop, the axis of rotation, and the bead, combined using the Show function.

In[1]:= PlotBead@ angles_ D :=
Module@8hoop, bead, ax, a = 0.1, x, y, z, q = angles@@1DD, f = angles@@2DD<,

hoop =
ParametricPlot3D@8Sin@qD Cos@fD, Sin@qD Sin@fD, -Cos@qD<, 8q, 0, 2 p<, PlotStyle Ø Thick,
BoxRatios Ø Automatic, PlotRange Ø 88-1.1, 1.1<, 8-1.1, 1.1<, 8-1.1, 1.1<<D;

ax = ParametricPlot3D@80, 0, z<, 8z, -1.1, 1.1<,
PlotRange Ø 88-1.1, 1.1<, 8-1.1, 1.1<, 8-1.1, 1.1<<D;

x = Sin@qD Cos@fD;
y = Sin@qD Sin@fD;
z = -Cos@qD;
bead = ParametricPlot3D@8x + a Sin@qD Cos@fD, y + a Sin@qD Sin@fD, z + a Cos@qD<,

8q, 0, p<, 8f, 0, 2 p<, Mesh Ø None, BoxRatios Ø AutomaticD;
Show@8ax, hoop, bead<, Axes Ø False, Boxed Ø TrueD

D

Dynamics
In[2]:= g = 9.8;

R = 0.1;
ssol = 1; H* this will be replaced with a solution to the DE *L

I will assume that the bead starts from rest at the beginning of the simulation time, and will simulate for a fixed time of
5 seconds (rather arbitrary, but probably sufficient for the present purpose). MakeBeadGo takes the initial angular
position of the bead and the rotation frequency f of the hoop, in hertz, and computes the numerical solution to the
differential equation of motion in ssol, then animates the solution.

In[5]:= MakeBeadGo@q0_, f_D := ModuleB8w = 2 p f<,

ssol = NDSolveB:q''@tD +
g

R
Sin@q@tDD -

w2

2
Sin@2 q@tDD ã 0,

q'@0D ã 0, q@0D ã q0>, q@tD, 8t, 0, 5<F êê First;

Animate@ PlotBead@ 8 Hq@tD ê. ssolL ê. t Ø tt, 2 p f tt<D ,

8tt, 0, 5, 0.01<, AnimationRate Ø 0.25, AnimationRunning Ø FalseD F



In[6]:= MakeBeadGo@10 °, 2.22817D

Out[6]=

tt

To perform calculations on the numerical solution object, we apply ssol to q[t] as follows :
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In[7]:= Plot@H q@tD ê. ssolL, 8t, 0, 1<D

Out[7]=

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

We can find the peak using the FindMaximum function, for which it is important to give a reasonable starting guess. It
outputs the maximum value, and the value of the independent variable that corresponds to the maximum.

In[8]:= FindMaximum@ Hq@tD ê. ssolL, 8t, 0.2<D

Out[8]= 81.5556, 8t Ø 0.389604<<

To automate finding the period and amplitude, we can use a Module, which is a Mathematica procedure having local
variables. The FindAmpPeriod[] function takes in an initial angular position and rotation rate, then integrates the
equation of motion for a 3 seconds. It then looks for either the first minimum or the first maximum, depending on the
slope of q(t) at t = 0. Finally, it returns the amplitude (half the angular range) and the period.

In[9]:= FindAmpPeriod@q0_, f_D :=

ModuleB8w = 2 p f, s, minlist, halfPeriod, rising, extreme, amplitude, tabl, k, x<,

s = NDSolveB:q''@tD +
g

R
Sin@q@tDD -

w2

2
Sin@2 q@tDD ã 0,

q'@0D ã 0, q@0D ã q0>, q, 8t, 0, 3<F êê First;

H* Figure out whether the initial condition corresponds to
a minimum or a maximum *L

rising = If@ HEvaluate@q@tD ê. sD ê. t Ø 0.001L > q0, 1, -1D;

H* To seed the FindMinimum routine, do a rough scan looking for a turning point *L
tabl = Table@ q@tD ê. s, 8t, 0.05, 3, 0.05<D;

H* Separate compound statements with a semicolon;
a For loop takes 4 arguments in a list Hseparated by commasL. *L
For@x = 2, x < Length@tablD, x++,
k = Htabl@@xDD - tabl@@x - 1DDL * Htabl@@x + 1DD - tabl@@xDDL;
If@k < 0, Break@D, DD;

minlist = FindMaximum@ Evaluate@ rising * q@tD ê. sD, 8t, 0.05 x<D;
H* FindMaximum returns a list of two items: the value of the function at maximum

and a list of rules for the independent variableHsL at the maximum *L
halfPeriod = t ê. minlist@@2DD;
extreme = minlist@@1DD rising;

amplitude =
Abs@extreme - q0D

2
;

H* The final statement Hwithout semicolonL in a Module is the return value *L

8amplitude, halfPeriod 2< F
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In[10]:= FindAmpPeriod@ 78 °, 2D

Out[10]= 81.36136, 1.61424<

In[11]:= 77 ° êê N

Out[11]= 1.3439

In[12]:= FindAmpPeriod@ p ê 4, 2D

Out[12]= 80.110991, 0.643397<

The solution
In[13]:= FindAmpPeriod@ 5 °, 2.0 D

Out[13]= 80.61801, 1.10716<

In[14]:= FindAmpPeriod@ 175 °, 2.0 D

Out[14]= 83.05433, 1.25157<

In[15]:= Plot@ Evaluate@ 180 ê p q@tD ê. ssolD, 8t, 0, 3<D

Out[15]=

0.5 1.0 1.5 2.0 2.5 3.0

20

40

60

80

In[16]:= 83.05433, 0.61801< 180 ê p

Out[16]= 8175., 35.4094<

Looks like it’s close enough. So, the amplitude at 5° is 0.61801 (35.409°) and the period is 1.10716 s. At 175°
release the amplitude is 3.05433 (175°) and the period is 1.25157 s.
Now let' s plot the amplitude and period as functions of q.

In[17]:= FindAmpPeriod@1.33, 2D

Out[17]= 81.33, 2.29099<
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In[18]:= Plot@ 8FindAmpPeriod@ Evaluate@x °D, 2.0D@@1DD, FindAmpPeriod@ Evaluate@x °D, 2.0D@@2DD<,
8x, 5, 175 < , PlotStyle Ø 8Red, Blue<, AxesLabel Ø 8q0, "Amp or Period"<D

Out[18]=
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Wow, that's an interesting graph. Something funky is clearly happening near 76°. Let's zoom in:
In[19]:= Plot@ 8FindAmpPeriod@ Evaluate@x °D, 2.0D@@1DD, FindAmpPeriod@ Evaluate@x °D, 2.0D@@2DD<,

8x, 75, 77 < , PlotStyle Ø 8Red, Blue<, AxesLabel Ø 8q0, "Amp or Period"<D

Out[19]=
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Amp or Period

In[20]:= ss@q0_D := q@tD ê. NDSolveB:q''@tD +
g

R
Sin@q@tDD -

H4 pL2

2
Sin@2 q@tDD ã 0,

q'@0D ã 0, q@0D ã q0>, q@tD, 8t, 0, 5<F

In[21]:= Plot@ Evaluate@ 8ss@ 76 °D, ss@76.05 °D, ss@ 76.1 °D<D, 8t, 0, 5<D

Out[21]=
1 2 3 4 5

-1.0

-0.5

0.5

1.0

Okay, we see what's going on. At a release angle near 76°, the bead nearly makes it to the origin. A tiny bit more and it
makes it through the origin and goes on to negative values of q, so the amplitude effectively doubles. Also, the period
goes way up at this point, because the bead goes very slow near the origin.
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