Classical Mechanics

for the 19th century
T. Helliwell

V. Sahakian

Contents

1 Newtonian particle mechanics 1
1.1 Inertial frames and the Galilean transformation 1
1.2 Newton's laws of motion 4
Example 1-1: A bacterium with a viscous retarding force
Example 1-2: A linearly damped oscillator
1.3 Systems of particles 12
1.4 Conservation laws 15
Example 1-3: A wrench in space
Example 1-4: A particle moving in two dimensions with an attractivespring forceExample 1-5: A particle attached to a spring revisited
Example 1-6: Newtonian gravity and its potential energy
Example 1-7: Dropping a particle in spherical gravity
Example 1-8: Potential energies and turning points for positive power-lawforces
1.5 Forces of nature 32
1.6 Dimensional analysis 34
Example 1-9: Find the rate at which molasses flows through a narrowpipe
1.7 Synopsis 37
1.8 Exercises and Problems 38
2 Relativity 47
2.1 Foundations 47
2.1.1 The Postulates 47
2.1.2 The Lorentz transformation 49
Example 2-1: Rotation and rapidity
2.2 Relativistic kinematics 56
2.2.1 Proper time 56
2.2.2 Four-velocity 59
Example 2-2: The transformation of ordinary velocity
2.3 Relativistic dynamics 64
2.3.1 Four-momentum 64
Example 2-3: Relativistic dispersion relation
Example 2-4: Decay into two particles
2.3.2 Four-force 70
2.3.3 Dynamics in practice 72
Example 2-5: Uniformly accelerated motion
Example 2-6: The Doppler effect
2.3.4 Minkowski diagrams 78
Example 2-7: Time dilation
Example 2-8: Length contraction
Example 2-9: The twin paradox
2.4 Exercises and Problems 88
3 The Variational Principle 99
3.1 Fermat's principle 99
3.2 The calculus of variations 101
3.3 Geodesics 108
Example 3-1: Geodesics on a plane
Example 3-2: Geodesics on a sphere
3.4 Brachistochrone 113
Example 3-3: Fermat again
3.5 Several Dependent Variables 119
Example 3-4: Geodesics in three dimensions
3.6 Mechanics from a variational principle 121
3.7 Motion in a uniform gravitational field 123
3.8 Summary 127
3.9 Exercises and Problems 129
4 Lagrangian mechanics 137
4.1 The Lagrangian in Cartesian coordinates 137
4.2 Hamilton's principle 138
Example 4-1: A simple pendulumExample 4-2: A bead sliding on a vertical helixExample 4-3: Block on an inclined plane
4.3 Generalized momenta and cyclic coordinates 146
Example 4-4: Particle on a tabletop, with a central force
Example 4-5: The spherical pendulum
4.4 The Hamiltonian 154
Example 4-6: Bead on a rotating parabolic wire
4.5 Systems of particles 160
Example 4-7: Two interacting particles
Example 4-8: Pulleys everywhere
Example 4-9: A block on a movable inclined plane
4.6 Small oscillations about equilibrium 170
Example 4-10: Particle on a tabletop with a central spring force
Example 4-11: Oscillations of a bead on a rotating parabolic wire
4.7 Relativistic generalization 174
4.8 Summary 175
4.9 Appendix A: When and why is $H \neq T+U$? 178
4.10 Exercises and Problems 180
5 Symmetries and Conservation Laws 189
Example 5-1: A simple example
5.1 Infinitesimal transformations 191
5.1.1 Direct transformations 191
5.1.2 Indirect transformations 192
5.1.3 Combined transformations 193
Example 5-2: Translations
Example 5-3: Rotations
Example 5-4: Lorentz transformations
5.2 Symmetry 195
5.2.1 Noether's theorem 196
Example 5-5: Space translations and momentum
Example 5-6: Time translation and energy
Example 5-7: Rotations and angular momentum
Example 5-8: Lorentz and Galilean Boosts
Example 5-9: Sculpting Lagrangians from symmetry
Example 5-10: Generalized momenta and cyclic coordinates
5.2.2 Some comments on symmetries 209
5.3 Exercises and Problems 210
6 Gravitation and Central-force motion 213
6.1 Central forces 213
6.2 The two-body problem 216
6.3 The effective potential energy 219
6.3.1 Radial motion for the central-spring problem 220
6.3.2 Radial motion in central gravity 221
6.4 Bertrand's Theorem 223
6.5 The shape of central-force orbits 223
6.5.1 Central spring-force orbits 224
6.5.2 The shape of gravitational orbits 225
Example 6-1: Orbital geometry and orbital physics
6.6 Orbital dynamics 232
6.6.1 Kepler's second law 233
6.6.2 Kepler's third law 235
Example 6-2: Halley's Comet
6.6.3 Minimum-energy transfer orbits 237
Example 6-3: A trip to Mars
Example 6-4: Gravitational assists
6.7 Relativistic gravitation 243
Example 6-5: The precession of Mercury's perihelion
6.8 Exercises and Problems 255
7 Electromagnetism 265
7.1 The Lorentz force law 265
7.2 Contact forces 265
8 Systems of particles 267
8.1 Newtonian mechanics of a system 267
8.2 Lagrangians for systems of particles 274
8.3 Exercises and Problems 276
9 Hamiltonian formulation 279
9.1 Legendre transformations 279
9.2 Hamilton's equations 279
9.3 Phase space and canonical transformations 279
9.3.1 Louiville's theorem 279
9.3.2 Heisenberg formulation of Quantum Mechanics 279
10 Accelerating frames 281
10.1 Linearly accelerating frames 281
Example 10-1: Pendulum in an accelerating spaceship 10.2 Rotating frames 285
Example 10-2: Throwing a ball in a rotating space colony
Example 10-3: Polar orbits around the Earth 10.3 Pseudoforces in rotating frames 289
Example 10-4: Rotating space colonies revisited 10.4 Pseudoforces on Earth 294
10.4.1 Centrifugal pseudoforces on Earth 295
10.4.2 Coriolis pseudoforces on Earth 296
Example 10-5: Coriolis pseudoforces in airflow
Example 10-6: Foucault's pendulum
10.5 Spacecraft rendezvous and docking 302
Example 10-7: Rendezvous with the space station?
Example 10-8: Losing a wrench?
10.6 Exercises and Problems 311
11 Rigid Body Dynamics 321
12 From classical to quantum and back 323
12.1 Particles and paths 324
12.1.1 Double-slit experiments 324
12.1.2 Feynman sum-over-paths 328
12.1.3 Two-slit interference 331
12.1.4 No barriers at all 337
12.1.5 How classical in the path? 342
12.1.6 Motion with forces 343
12.2 Summary 344
12.3 Double-slit experiments 345
12.4 Feynman sum-over-paths 348
12.5 Two-slit interference 351
12.6 No barriers at all 357
12.7 How classical in the path? 362
12.8 Motion with forces 363
12.9 Why Hamilton's principle? 364

List of Figures

1.1 Various inertial frames in space. If one of these frames is inertial, any other frame moving at constant velocity relative to it is also inertial. 2
1.2 Two inertial frames, \mathcal{O} and \mathcal{O}^{\prime}, moving relative to one another along their mutual x axes. 3
1.3 A bacterium in a fluid. What is its motion if it begins with velocity v_{0} and then stops swimming? 8
1.4 Motion of an oscillator if it is (a) overdamped, (b) under- damped, or (c) critically damped, for the special case where the oscillator is released from rest $\left(v_{0}=0\right)$ at some position x_{0}. 11
1.5 A system of particles, with each particle identified by a posi- tion vector \mathbf{r} 13
1.6 A collection of particles, each with a position vector \mathbf{r}_{i} from a fixed origin. The center of mass $\mathbf{R}_{C M}$ is shown, and also the position vector \mathbf{r}_{i}^{\prime} of the i th particle measured from the center of mass. 14
1.7 The position vector for a particle. Angular momentum is al- ways defined with respect to a chosen point from where the position vector originates. 17
1.8 A two-dimensional elliptical orbit of a ball subject to a Hooke's law spring force, with one end of the spring fixed at the origin. 20
1.9 The work done by a force on a particle is its line integral along the path traced by the particle. 22
1.10 Newtonian gravity pulling a probe mass m towards a source mass M. 27
1.11 Potential energy functions for selected positive powers n. A possible energy E is drawn as a horizontal line, since E is constant. The difference between E and $U(x)$ at any point is the value of the kinetic energy T. The kinetic energy is zero at the "turning points", where the E line intersects $U(x)$. Note that for $n=1$ there are two turning points for $E>0$, but for $n=2$ there is only a single turning point. 30
2.1 Inertial frames \mathcal{O} and \mathcal{O}^{\prime} 48
2.2 Graph of the γ factor as a function of the relative velocity β. Note that $\gamma \cong 1$ for nonrelativistic particles, and $\gamma \rightarrow \infty$ as $\beta \rightarrow 1$. 53
2.3 The velocity v^{x} as a function of $v^{\prime x}$ for fixed relative frame velocity $V=0.5 c$. 63
2.4 A particle of mass m_{0} decays into two particles with masses m_{1} and m_{2}. Both energy and momentum are conserved in the decay, but mass is not conserved in relativistic physics. That is, $m_{0} \neq m_{1}+m_{2}$ 68
2.5 Plots of relativistic constant-acceleration motion. (a) shows $v^{x}(t)$, demonstrating that $v^{x}(t) \rightarrow c$ as $t \rightarrow \infty$, i.e. the speed of light is a speed limit in Nature. The dashed line shows the incorrect Newtonian prediction. (b) shows the hyperbolic trajectory of the particle on a $c t-x$ graph. Once again the dashed trajectory is the Newtonian prediction. 75
2.6 Observer \mathcal{O}^{\prime} shooting a laser towards observer \mathcal{O} while moving towards \mathcal{O} 76
2.7 A point on a Minkowski diagram represents an event. A par- ticle's trajectory appears as a curve with a slope that exceeds unity everywhere. 78
2.8 Three events on a Minkowski diagram. Events A and B are timelike separated; A and C are lithlike separated; and B and C are spacelike separated. 79
2.9 The hyperbolic trajectory of a particle undergoing constant acceleration motion on a Minkowski diagram. 80
2.10 The grid lines of two observers labeling the same event on a spacetime Minkowski diagram. 81
2.11 The time dilation phenomenon. (a) Shows the scenario of a clock carried by observer \mathcal{O}. (b) shows the case of a clock carried by \mathcal{O}^{\prime}. .82
2.12 The phenomenon of length contraction. (a) Shows the scenario of a meter stick carried by observer \mathcal{O}^{\prime}. (b) shows the case of a stick carried by \mathcal{O}.
2.13 Minkowski diagrams of the twin paradox. (a) shows simultaneity lines according to John. (b) shows simultaneity lines according to Jane, except for the two dotted lines sandwiching the accelerating segment84
3.1 Light traveling by the least-time path between a and b, in which it moves partly through air and partly through a piece of glass. At the interface the relationship between the angle θ_{1} in air, with index of refraction n_{1}, and the angle θ_{2} in glass, with index of refraction n_{2}, is $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$, known as Snell's law. This phenomenon is readily verified by experiment. . . . 100
3.2 A light ray from a star travels down through Earth's atmosphere on its way to the ground.102
3.3 A function of two variables $f\left(x_{1}, x_{2}\right)$ with a local minimum at point A, a local maximum at point B, and a saddle point at C. 103
3.4 Various paths $y(x)$ that can be used as input to the functional $I[f(x)]$. We look for that special path from which an arbitrary small displacement $\delta y(x)$ leaves the functional unchanged to linear order in $\delta y(x)$. Note that $\delta y(a)=\delta y(b)=0$. 105
3.5 The coordinates θ and φ on a sphere. 110
3.6 (a) Great circles on a sphere are geodesics; (b) Two paths nearby the longer of the two great-circle routes of a path.
3.7 Possible least-time paths for a sliding block. 113
3.8 A cycloid. If in darkness you watch a wheel rolling along a level surface, with a lighted bulb attached to a point on the outer rim of the wheel, the bulb will trace out the shape of a cycloid. In the diagram the wheel is rolling along horizontally beneath the surface. For $x_{b}<(\pi / 2) y_{b}$, the rail may look like the segment from a to b_{1}; for $x_{b}>(\pi / 2) y_{b}$, the segment from a to b_{2} would be needed.
3.9 (a) A light ray passing through a stack of atmospheric layers; (b) The same problem visualized as a sequence of adjacent slabs of air of different index of refraction. 118
3.10 Two spaceships, one accelerating in gravity-free space (a), and the other at rest on the ground (b). Neither observers in the accelerating ship nor those in the ship at rest on the ground can find out which ship they are in on the basis of any exper- iments carried out solely within their ship. 123
3.11 A laser beam travels from the bow to the stern of the acceler- ating ship. 124
4.1 Cartesian, cylindrical, and spherical coordinates 140
4.2 A bead sliding on a vertically-oriented helical wire 145
4.3 Block sliding down an inclined plane 146
4.4 Particle moving on a tabletop 148
4.5 The effective radial potential energy for a mass m moving with an effective potential energy $U_{\text {eff }}=\left(p^{\varphi}\right)^{2} / 2 m r^{2}+(1 / 2) k r^{2}$ for various values of p^{φ}, m, and k. 150
4.6 Coordinates of a ball hanging on an unstretchable string 152
4.7 A sketch of the effective potential energy $U_{\text {eff }}$ for a spherical pendulum. A ball at the minimum of $U_{\text {eff }}$ is circling the vertical axis passing through the point of suspension, at constant θ. The fact that there is a potential energy minimum at some angle θ_{0} means that if disturbed from this value the ball will oscillate back and forth about θ_{0} as it orbits the vertical axis. 153
4.8 A bead slides without friction on a vertically-oriented parabolic wire that is forced to spin about its axis of symmetry. 156
4.9 The effective potential $U_{\text {eff }}$ for the Hamiltonian of a bead on arotating parabolic wire with $z=\alpha r^{2}$, depending upon whetherthe angular velocity ω is less than, greater than, or equal to$\omega_{\text {crit }}=\sqrt{2 g} \alpha$. 159
4.10 Two interacting beads on a one-dimensional frictionless rail. The interaction between the particles depends only on the distance between them. 161
4.11 A contraption of pulleys. We want to find the accelerations of all three weights. We assume that the pulleys have negligible mass so they have negligible kinetic and potential energies.163

$$
\begin{aligned}
& \text { 4.12 A block slides along an inclined plane. Both block and inclined } \\
& \text { plane are free to move along frictionless surfaces. } 166
\end{aligned}
$$

4.13 An effective potential energy $U_{\text {eff }}$ with a a focus near a min- imum. Such a point is a stable equilibrium point. The dot- ted parabola shows the leading approximation to the potential near its minimum. As the energy drains out, the system settles into its minimum with the final moments being well approxi- mated with harmonic oscillatory dynamics. 171
4.14 The shape of the two-dimensional orbit of a particle subject to a central spring force, for small oscillations about the equi- librium radius. 173
5.1 Two particles on a rail. 190
5.2 The two types of transformations considered: direct on the left, indirect on the right. 192
6.1 Newtonian gravity pulling a probe mass m_{2} towards a source mass m_{1} 214
6.2 Angular momentum conservation and the planar nature of cen- tral force orbits. 215
6.3 The classical two-body problem in physics. 216
6.4 The effective potential for the central-spring potential. 221
6.5 The effective gravitational potential. 222
6.6 Elliptical orbits due to a central spring force $\mathbf{F}=-k \mathbf{r}$. 226
6.7 Conic sections: circles, ellipses, parabolas, and hyperbolas. 228
6.8 An elliptical gravitational orbit, showing the foci, the semi- major axis a, semiminor axis b, the eccentricity ϵ, and the periapse and apoapse. 229
6.9 Parabolic and hyperbolic orbits 231
6.10 The four types of gravitational orbits 233
6.11 The area of a thin pie slice 234
6.12 The orbit of Halley's comet 236
6.13 A minimum-energy transfer orbit to an outer planet. 238
6.14 Insertion from a parking orbit into the transfer orbit. 239
6.15 A spacecraft flies by Jupiter, in the reference frames of (a) Jupiter (b) the Sun 243
6.16 An ant colony measures the radius and circumference of a turntable. 245
6.17 Non-Euclidean geometry: circumferences on a sphere. 246
6.18 Successive light rays sent to a clock at altitude h from a clock on the ground. 248
6.19 Effective potential for the Schwarzschild geometry 251
10.1 A ball is thrown sideways in an accelerating spaceship (a) as seen by observers within the ship (b) as seen by a hypothetical inertial observer outside the ship 283
10.2 A simple pendulum in an accelerating spaceship 284
10.3 Colonists living on the inside rim of a rotating cylindrical space colony 285
10.4 Throwing a ball in a rotating space colony (a) From the point of view of an external inertial observer (b) From the point of view of a colonist 287
10.5 Path of a satellite orbiting the Earth 288
10.6 A vector that is constant in a rotating frame changes in an inertial frame. 289
10.7 (a) The angular velocity vector for a rotating frame (b) the triple cross product $\omega \times \omega \times \mathbf{r}$ 292
10.8 Stroboscopic pictures of a ball thrown from the center of a rotating space colony (a) as seen in an inertial frame (b) as seen in the colony 294
10.9 The length of the day relatively to the stars (sidereal time) is slightly longer than the length of the day relative to the Sun. 295
10.10The Earth bulges at the equator due to its rotation, which produces a centrifugal pseudoforce in the rotating frame. A plumb bob hanging near the surface experiences both gravita- tion and the centrifugal pseudoforce. 296
10.11(a) A set of three Cartesian coordinates placed on the Earth (b) The horizontal coordinates x and y. 297
10.12Inflowing air develops a counterclockwise rotation in the north- ern hemisphere 299
10.13Foucault's pendulum 30010.14(a) A spacecraft trying to rendezvous and dock with a spacestation in circular orbit around the Earth. (b) A strandedastronaut trying to return to the space station by throwing awrench. (c) An astronaut accidentally lets a wrench escapefrom the spacestation. What is its subsequent trajectory? . . . 303

10.15Coordinates of the space station and object 304
10.16Rendezvous with the ISS? The initial boost. 307
10.17Rendezvous with the ISS? The bizarre trajectory, after start-ing off in the desired direction. 308
10.18The spacecraft trajectory in the nonrotating frame. 309
10.19Trajectory of a wrench in the rotating frame in which the ISSis at rest. The wrench is thrown from the ISS vertically, awayfrom the Earth. It returns like a boomerang. 310
10.20Trajectory of the wrench in the nonrotating frame where theISS is in circular orbit around the Earth.311
10.21(a) a balloon in an accelerating car (b) a cork in a fishtank 312
10.22Tilt of the northward-flowing gulf stream surface, looking north317

Chapter 1

Newtonian particle mechanics

In this chapter we review the laws of Newtonian mechanics. We set the stage with inertial frames and the Galilean transformation, move on to Newton's celebrated three laws of motion, present a catalogue of forces that are commonly encountered in mechanics, and end with a review of dimensional analysis. All this is a preview to a relativistic treatment of mechanics in the next chapter.

1.1 Inertial frames and the Galilean transformation

Classical mechanics begins by analyzing the motion of particles. Classical particles are idealizations: they are pointlike, with no internal degrees of freedom like vibrations or rotations. But by understanding the motion of these ideal "particles" we can also understand a lot about the motion of real objects, because we can often ignore what is going on inside of them. The concept of "classical particle" can in the right circumstances be used for objects all the way from electrons to baseballs to stars to entire galaxies.

In describing the motion of a particle we first have to choose a frame of reference in which an observer can make measurements. Many reference frames could be used, but there is a special set of frames, the nonaccelerating, inertial frames, which are particularly simple. Picture a set of three orthogonal meter sticks defining a set of Cartesian coordinates drifting through space with no forces applied. The set of meter sticks neither accelerates nor rotates relative to visible distant stars. An inertial observer drifts with the

Figure 1.1: Various inertial frames in space. If one of these frames is inertial, any other frame moving at constant velocity relative to it is also inertial.
coordinate system and uses it to make measurements of physical phenomena. This inertial frame and inertial observer are not unique, however: having established one inertial frame, any other frame moving at constant velocity relative to it is also inertial, as illustrated in Figure 1.1.

Two of these inertial observers, along with their personal coordinate systems, are depicted in Figure 1.2: observer \mathcal{O} describes positions of objects through a Cartesian system labeled by (x, y, z), while observer \mathcal{O}^{\prime} uses a system labeled by ($x^{\prime}, y^{\prime}, z^{\prime}$).

An event of interest to an observer is characterized by the position in space at which the measurement is made - but also by the instant in time at which the observation occurs, according to clocks at rest in the observer's inertial frame. For example, an event could be a snapshot in time of the position of a particle along its trajectory. Hence, the event is assigned four numbers by observer $\mathcal{O}: x, y, z$, and t for time, while observer \mathcal{O}^{\prime} labels the same event $x^{\prime}, y^{\prime}, z^{\prime}$, and t^{\prime}.

Without loss of generality, observer \mathcal{O} can choose her x axis along the direction of motion of \mathcal{O}^{\prime}, and then the x^{\prime} axis of \mathcal{O}^{\prime} can be aligned with that axis as well, as shown in Figure 1.2. it seems intuitively obvious that the two coordinate systems are then related by

$$
\begin{equation*}
x=x^{\prime}+V t^{\prime}, \quad y=y^{\prime}, \quad z=z^{\prime} \quad t=t^{\prime} \tag{1.1}
\end{equation*}
$$

Figure 1.2: Two inertial frames, \mathcal{O} and \mathcal{O}^{\prime}, moving relative to one another along their mutual x axes.
where we assume that the origins of the two frames coincide at time $t^{\prime}=$ $t=0$. This is known as a Galilean transformation. Note that the only difference in the coordinates is in the x direction, corresponding to the distance between the two origins as each system moves relative to the other. This transformation - in spite of being highly intuitive - will turn out to be incorrect, as we shall see in the next chapter. But for now, we take it as good enough for our Newtonian purposes.

If the coordinates represent the instantaneous position of a particle, we can write

$$
\begin{equation*}
x(t)=x^{\prime}\left(t^{\prime}\right)+V t^{\prime}, \quad y(t)=y^{\prime}\left(t^{\prime}\right), \quad z(t)=z^{\prime}\left(t^{\prime}\right) \quad t=t^{\prime} . \tag{1.2}
\end{equation*}
$$

We then differentiate this transformation with respect to $t=t^{\prime}$ to obtain the transformation laws of velocity and acceleration. Differentiating once gives

$$
\begin{equation*}
v^{x}=v^{\prime x}+V, \quad v^{y}=v^{\prime y}, \quad v^{z}=v^{\prime z} \tag{1.3}
\end{equation*}
$$

where for example $v^{x} \equiv d x / d t$ and $v_{x}^{\prime} \equiv d x^{\prime} / d t^{\prime}$, and differentiating a second time gives

$$
\begin{equation*}
a^{x}=a^{\prime x}, \quad a^{y}=a^{\prime y}, \quad a^{z}=a^{\prime z} \tag{1.4}
\end{equation*}
$$

That is, the velocity components of a particle differ by the relative frame velocity in each direction, while the acceleration components are the same in
every inertial frame. Therefore one says that the acceleration of a particle is Galilean invariant.

We take as a postulate that the fundamental laws of classical mechanics are also Galilean invariant. This mathematical statement is equivalent to the physical statement that an observer at rest in any inertial frame is qualified to use the fundamental laws - there is no preferred inertial frame of reference. This equivalence of inertial frames is called the principle of relativity.

We are now equipped to summarize the fundamental laws of Newtonian mechanics, and discuss their invariance under the Galilean transformation.

1.2 Newton's laws of motion

In his Principia of 1687, Isaac Newton (1642-1727) presented his famous three laws. The first of these is the law of inertia:

I: If there are no forces on an object, then if the object starts at rest it will stay at rest, or if it is initially set in motion, it will continue moving in the same direction in a straight line at constant speed.

We can use this definition to test whether or not our frame is inertial. If we are inertial observers and we remove all interactions from a particle under observation, if set at rest the particle will stay put, and if tossed in any direction it will keep moving in that direction with constant speed. The law of inertia is obeyed, so by definition our frame is inertial. Note from the Galilean velocity transformation that if a particle has constant velocity in one inertial frame it has constant velocity in all inertial frames. Hence, Galilean transformations correctly connect the perspectives of inertial reference frames.

An astronaut set adrift from her spacecraft in outer space, far from Earth, or the Sun, or any other gravitating object, will move off in a straight line at constant speed when viewed from an inertial frame. So if her spaceship is drifting without power and is not rotating, the spaceship frame is inertial, and onboard observers will see her move away in a straight line. But if her spaceship is rotating, for example, observers on the ship will see her move off in a curved path - the frame inside a rotating spaceship is not inertial.

Now consider an inertial observer who observes a particle to which a force F is applied. Then Newton's second law states that

$$
\begin{equation*}
\mathbf{F}=\frac{d \mathbf{p}}{d t} \tag{1.5}
\end{equation*}
$$

where the momentum of the particle is $\mathbf{p}=m \mathbf{v}$, the product of its mass and velocity. That is,

II: The time rate of change of a particle's momentum is equal to the net force on that particle.

Newton's second law tells us that if the momentum of a particle changes, there must be a net force causing that change. Note that the second law gives us the means to identify and quantify the effect of forces and interactions. By conducting a series of measurements of the rate of change of momenta of a selection of particles, we explore the forces acting on them in their environment. Once we understand the nature of these forces, we can use this knowledge to predict the motion of other particles in a wider range of circumstances - this time by deducing the effect of such forces on rate of change of momentum.

Note that the derivative $d \mathbf{p} / d t=m d \mathbf{v} / d t=m \mathbf{a}$, so Newton's second law can also be written in the form $\mathbf{F}=m \mathbf{a}$, where \mathbf{a} is the acceleration of the particle. The law therefore implies that if we remove all forces from an object, neither its momentum nor its velocity will change: it will remain at rest if started at rest, and move in a straight line at constant speed if given an initial velocity. But that is just Newton's first law, so it might seem that the first law is just a special case of the second law! However, the second
law is not true in all frames of reference. An accelerating observer will see the momentum of an object changing, even if there is no net force on it. In fact, it is only inertial observers who can use Newton's second law, so the first law is not so much a special case of the second as a means of specifying those observers for whom the second law is valid.

Newton's second law is the most famous fundamental law of classical mechanics, and it must also be Galilean invariant according to our principle of relativity. We have already shown that the acceleration of a particle is invariant and we also take the mass of a particle to be the same in all inertial frames. So if $\mathbf{F}=m \mathbf{a}$ is to be a fundamental law, which can be used by observers at rest in any inertial frame, we must insist that the force on a particle is likewise a Galilean invariant. Newton's second law itself does not specify which forces exist, but in classical mechanics any force on a particle (due to a spring, gravity, friction, or whatever) must be the same in all inertial frames.

If the drifting astronaut is carrying a wrench, by throwing it away (say) in the forward direction she exerts a force on it. During the throw the momentum of the wrench changes, and after it is released, it travels in some straight line at constant speed.

Finally, Newton's third law states that

III: "Action equals reaction". If one particle exerts a force on a second particle, the second particle exerts an equal but opposite force back on the first particle.

We have already stated that any force acting on a particle in classical me-
chanics must be the same in all inertial frames, so it follows that Newton's third law is also Galilean invariant: a pair of equal and opposite forces in a given inertial frame transform to the same equal and opposite pair in another inertial frame.

While the astronaut, drifting away from her spaceship, is exerting a force on the wrench, at each instant the wrench is exerting an equal but opposite force back on the astronaut. This causes the astronaut's momentum to change as well, and if the change is large enough her momentum will be reversed, allowing her to drift back to her spacecraft in a straight line at constant speed when viewed in an inertial frame.

EXAMPLE 1-1: A bacterium with a viscous retarding force
The most important force on a nonswimming bacterium in a fluid is the viscous drag force $F=-b v$, where v is the velocity of the bacterium relative to the fluid and b is a constant that depends on the size and shape of the bacterium and the viscosity of the fluid - the minus sign means that the drag force is opposite to the direction of motion. If the bacterium, as illustrated in Figure 1.3, gains a velocity v_{0} and then stops swimming, what is its subsequent velocity as a function of time?

Let us assume that the fluid defines an inertial reference frame. Newton's second law then leads to the ordinary differential equation

$$
\begin{equation*}
m \frac{d v}{d t}=-b v \Rightarrow m \ddot{x}=-b \dot{x} \tag{1.6}
\end{equation*}
$$

Figure 1.3: A bacterium in a fluid. What is its motion if it begins with velocity v_{0} and then stops swimming?
where $\dot{x} \equiv d x / d t$ and $\ddot{x} \equiv d^{2} x / d t^{2}$. As is always the case with Newton's second law, this is a second-order differential equation in position. However, it is a particularly simple one that can be integrated at once. Separating variables and integrating,

$$
\begin{equation*}
\int_{v_{0}}^{v} \frac{d v}{v}=-\frac{b}{m} \int_{0}^{t} d t \tag{1.7}
\end{equation*}
$$

which gives $\ln (v)-\ln \left(v_{0}\right)=\ln \left(v / v_{0}\right)=-(b / m) t$. Exponentiating both sides,

$$
\begin{equation*}
v=v_{0} e^{-(b / m) t} \equiv v_{0} e^{-t / \tau} \tag{1.8}
\end{equation*}
$$

where $\tau \equiv m / b$ is called the "time constant" of the exponential decay. In a single time constant, i.e., when $t=\tau$, the velocity decreases to $1 / e$ of its initial value; therefore τ is a measure of how quickly the bacterium slows down. The bigger the drag force (or the smaller the mass) the greater the deceleration.

An alternate way to solve the differential equation is to note that it is linear with constant coefficients, so the exponential form $v(t)=A e^{\alpha t}$ is bound to work, for an arbitrary constant A and a particular constant α. In fact, the constant $\alpha=-1 / \tau$, found by substituting $v(t)=A e^{\alpha t}$ into the differential equation and requiring that it be a solution. In this first-order differential equation, the constant A is the single required arbitrary constant. It can be
determined by imposing the initial condition $v=v_{0}$ at $t=0$, which tells us that $A=v_{0}$.

Now we can integrate once again to find the bacterium's position $x(t)$. If we choose the x direction to be in the \mathbf{v}_{0} direction, then $v=d x / d t$, so

$$
\begin{equation*}
x(t)=v_{0} \int_{0}^{t} e^{-t / \tau} d t=v_{0} \tau\left(1-e^{-t / \tau}\right) . \tag{1.9}
\end{equation*}
$$

The bacterium's starting position is $x(0)=0$, and as $t \rightarrow \infty$, its position x asymptotically approaches the value $v_{0} \tau$. Note that given a starting position and an initial velocity, the path of a bacterium is determined by the drag force exerted on it and the condition that it stop swimming.

EXAMPLE 1-2: A linearly damped oscillator

We seek to find the motion of a mass m confined to move in the x direction at one end of a Hooke's-law spring of force-constant k, and which is also subject to the damping force $-b v$ where b is a constant. That is, we assume that the damping force is linearly proportional to the velocity of the mass and in the direction opposite to its motion. This is seldom true for macroscopic objects: damping is usually a steeper function of velocity than this. However, linear (i.e., viscous) damping illustrates the general features of damping while permitting us to find exact analytic solutions.

Newton's second law gives

$$
\begin{equation*}
F=-k x-b \dot{x}=m \ddot{x}, \tag{1.10}
\end{equation*}
$$

a second-order linear differential equation equivalent to

$$
\begin{equation*}
\ddot{x}+2 \beta \dot{x}+\omega_{0}^{2} x=0, \tag{1.11}
\end{equation*}
$$

where we write $\beta \equiv b / 2 m$ and $\omega_{0} \equiv \sqrt{k / m}$ to simplify the notation. We see here a scenario that is typical in a problem using Newton's second law: we generate a second-order differential equation. Mathematically, we are guaranteed a solution once we fix two initial conditions. This can be, for example, the initial position $x(0)=x_{0}$ and the initial velocity $v(t)=\dot{x}(t)=$ v_{0}. Hence, our solution will depend on two constants to be specified by the particular problem. In general, each dynamical variable we track through

Newton's second law will generate a single second-order differential equation, and hence will require two initial conditions. This is the sense in which Newton's laws provide us with predictive power: fix a few constants using initial conditions, and physics will tell us the future evolution of the system. For the example at hand, equation (1.11) is a linear differential equation with constant coefficients, which can be solved by setting $x \propto e^{\alpha t}$ for some α. Substituting this form into equation (1.11) gives the quadratic equation

$$
\begin{equation*}
\alpha^{2}+2 \beta \alpha+\omega_{0}^{2}=0 \tag{1.12}
\end{equation*}
$$

with solutions

$$
\begin{equation*}
\alpha=-\beta \pm \sqrt{\beta^{2}-\omega_{0}^{2}} \tag{1.13}
\end{equation*}
$$

There are now three possibilities: (1) $\beta>\omega_{0}$, the "overdamped" solution; (2) $\beta<\omega_{0}$, the "underdamped" solution; and (3) $\beta=\omega_{0}$, the "critically damped" solution.
(1) In the overdamped case the exponent α is real and negative, and so the position of the mass as a function of time is

$$
\begin{equation*}
x(t)=A_{1} e^{-\gamma_{1} t}+A_{2} e^{-\gamma_{2} t} \tag{1.14}
\end{equation*}
$$

where $\gamma_{1}=-\beta+\sqrt{\beta^{2}-\omega_{0}^{2}}$ and $\gamma_{2}=-\beta-\sqrt{\beta^{2}-\omega_{0}^{2}}$. Here A_{1} and A_{2} are arbitrary constants. The two terms are the expected linearly independent solutions of the second-order differential equation, and the coefficients A_{1} and A_{2} can be determined from the initial position x_{0} and initial velocity v_{0} of the mass. Figure 1.4(a) shows a plot of $x(t)$.
(2) In the underdamped case, the quantity $\sqrt{\beta^{2}-\omega_{0}^{2}}=i \sqrt{\omega_{0}^{2}-\beta^{2}}$ is purely imaginary, so

$$
\begin{equation*}
x(t)=e^{-\beta t}\left(A_{1} e^{i \omega_{1} t}+A_{2} e^{-i \omega_{1} t}\right) \tag{1.15}
\end{equation*}
$$

where $\omega_{1}=\sqrt{\omega_{0}^{2}-\beta^{2}}$. We can use Euler's identity

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{1.16}
\end{equation*}
$$

to write x in terms of purely real functions,

$$
\begin{equation*}
x(t)=e^{-\beta t}\left(\bar{A}_{1} \cos \omega_{1} t+\bar{A}_{2} \sin \omega_{1} t\right) \tag{1.17}
\end{equation*}
$$

Figure 1.4: Motion of an oscillator if it is (a) overdamped, (b) underdamped, or (c) critically damped, for the special case where the oscillator is released from rest $\left(v_{0}=0\right)$ at some position x_{0}.
where $\bar{A}_{1}=A_{1}+A_{2}$ and $\bar{A}_{2}=i\left(A_{1}-A_{2}\right)$ are real coefficients. We can also use the identity $\cos (\theta+\varphi)=\cos \theta \cos \varphi-\sin \theta \sin \varphi$ to write equation (1.17) in the form

$$
\begin{equation*}
x(t)=A e^{-\beta t} \cos \left(\omega_{1} t+\varphi\right) \tag{1.18}
\end{equation*}
$$

where $A=\sqrt{\bar{A}_{1}^{2}+\bar{A}_{2}^{2}}$ and $\varphi=\tan ^{-1}\left(-\bar{A}_{2} / \bar{A}_{1}\right)$. That is, the underdamped solution corresponds to a decaying oscillation with amplitude $A e^{-\beta t}$. The arbitrary constants A and φ can be determined from the initial position x_{0} and velocity v_{0} of the mass. Figure $1.4(\mathrm{~b})$ shows a plot of $x(t)$. If there is no damping at all, we have $b=\beta=0$ (and the oscillator is obviously "underdamped"). The original equation (1.11) becomes the simple harmonic oscillator equation

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=0 \tag{1.19}
\end{equation*}
$$

whose most general solution is

$$
\begin{equation*}
x(t)=A \cos \left(\omega_{0} t+\varphi\right) . \tag{1.20}
\end{equation*}
$$

This gives away the meaning of ω_{0} : it is the angular frequency of oscillation of a simple harmonic oscillator, related to the oscillation frequency ν in cycles/second by $\omega_{0}=2 \pi \nu$. Note that $\omega_{1}<\omega_{0}$; i.e. the damping slows down the oscillations in addition to damping the amplitude.
(3) In the critically damped case $\beta=\omega_{0}$ the two solutions of equation (1.12) merge into the single solution $x(t)=A e^{-\beta t}$. A second-order differential equation has two linearly independent solutions, however, so we need one more. This additional solution is $x=A^{\prime} t e^{-\beta t}$ for an arbitrary coefficient A^{\prime}, as can be seen by substituting this form into equation (1.11). The general solution for the critically damped case is therefore

$$
\begin{equation*}
x=\left(A+A^{\prime} t\right) e^{-\beta t} \tag{1.21}
\end{equation*}
$$

which has the two independent constants A and A^{\prime} needed to provide a solution determined by the initial position x_{0} and velocity v_{0}. Figure 1.4(c) shows a plot of $x(t)$ in this case.

Whichever solution applies, it is clear that the motion of the particle is determined by (a) the initial position $x(0)$ and velocity $\dot{x}(0)$, and (b) the force acting on it throughout its motion.

1.3 Systems of particles

So far we have concentrated on single particles. We will now expand our horizons to encompass systems of an arbitrary number of particles. A system of particles might be an entire solid object like a bowling ball, in which tiny parts of the ball can be viewed as individual infinitesimal particles. Or we might have a liquid in a glass, or the air in a room, or a planetary system, or a galaxy of stars, all made of constituents we treat as 'particles'.

The location of the $i^{t h}$ particle of a system can be identified by a position vector \mathbf{r}_{i} extending from the origin of coordinates to that particle, as illustrated in Figure 1.5. Using the laws of classical mechanics for each particle in the system, we can find the laws that govern the system as a whole. Define the total momentum \mathbf{P} of the system to be the sum of the momenta of the individual particles,

$$
\begin{equation*}
\mathbf{P}=\sum_{i} \mathbf{p}_{i} \tag{1.22}
\end{equation*}
$$

Figure 1.5: A system of particles, with each particle identified by a position vector \mathbf{r}

Similarly, define the total force \mathbf{F}_{T} on the system to be the sum of all the forces on all the particles,

$$
\begin{equation*}
\mathbf{F}_{T}=\sum_{i} \mathbf{F}_{i} . \tag{1.23}
\end{equation*}
$$

It then follows that $\mathbf{F}_{T}=d \mathbf{P} / d t$, just by adding up the individual $\mathbf{F}_{i}=$ $d \mathbf{p}_{i} / d t$ equations for all the particles. If we further split up the total force \mathbf{F}_{T} into $\mathbf{F}_{\text {ext }}$ (the sum of the forces exerted by external agents, like Earth's gravity or air resistance on the system of particles that form a golfball) and $\mathbf{F}_{\text {int }}$ (the sum of the internal forces between members of the system themselves, like the mutual forces between particles within the golfball), then

$$
\begin{equation*}
\mathbf{F}_{T}=\mathbf{F}_{\mathrm{int}}+\mathbf{F}_{\mathrm{ext}}=\mathbf{F}_{\mathrm{ext}} \tag{1.24}
\end{equation*}
$$

because all the internal forces cancel out by Newton's third law. That is, for any two particles i and j, the force of i on j is equal but opposite to the force of j on i. Finally, we can write a grand second law for the system as a whole,

$$
\begin{equation*}
\mathbf{F}_{\mathrm{ext}}=\frac{d \mathbf{P}}{d t} \tag{1.25}
\end{equation*}
$$

showing how the system as a whole moves in response to external forces.

Figure 1.6: A collection of particles, each with a position vector \mathbf{r}_{i} from a fixed origin. The center of mass $\mathbf{R}_{C M}$ is shown, and also the position vector \mathbf{r}_{i}^{\prime} of the i th particle measured from the center of mass.

Now the importance of momentum is clear. For if no external forces act on the collection of particles, their total momentum cannot depend upon time, so \mathbf{P} is conserved. Individual particles in the collection may move in complicated ways, but they always move in such a way as to keep the total momentum constant.

A useful quantity characterizing a system of particles is their center of mass position $\mathbf{R}_{C M}$. Let the $i^{t h}$ particle have mass m_{i}, and define the center of mass of the collection of particles to be

$$
\begin{equation*}
\mathbf{R}_{C M}=\frac{\sum_{i} m_{i} \mathbf{r}_{i}}{M} \tag{1.26}
\end{equation*}
$$

where $M=\sum_{i} m_{i}$ is the total mass of the system. We can write the position vector of a particle as the sum $\mathbf{r}_{i}=\mathbf{R}_{C M}+\mathbf{r}_{i}^{\prime}$, where \mathbf{r}_{i}^{\prime} is the position vector of the particle measured from the center of mass, as illustrated in Figure 1.6.

The velocity of the center of mass is

$$
\begin{equation*}
\mathbf{V}_{C M}=\frac{d \mathbf{R}_{C M}}{d t}=\frac{\sum_{i} m_{i} \mathbf{v}_{i}}{M}=\frac{\mathbf{P}}{M} \tag{1.27}
\end{equation*}
$$

differentiating term by term, and using the fact that the particle masses are constant. Again \mathbf{P} is the total momentum of the particles, so we have proven
that the center of mass moves at constant velocity whenever \mathbf{P} is conservedthat is, whenever there is no net external force. In particular, if there is no external force on the particles, their center of mass stays at rest if it starts at rest.

This result is also very important because it shows that a real object composed of many smaller "particles" can be considered a particle itself: it obeys all of Newton's laws with a position vector given by $\mathbf{R}_{C M}$, a momentum given by \mathbf{P}, and the only relevant forces being the external ones. It relieves us of having to draw a distinct line between particles and systems of particles. For some purposes we think of a star as composed of many smaller particles, and for other purposes the star as a whole could be considered to be a single particle in the system of stars called a galaxy.

1.4 Conservation laws

Using Newton's laws we can show that under the right circumstances, there are as many as three dynamical properties of a particle that remain constant in time, i.e. that are conserved. These properties are momentum, angular momentum, and energy. They are conserved under different circumstances, so in any particular case all of them, none of them, or only one or two of them may apply. As we will see, a conservation law typically leads to a first-order differential equation, which is generally much easier to tackle that the usual second-order equations we get from Newton's second law. This makes identifying conservation laws in a system a powerful tool for problem solving and characterizing the motion. We will later also learn in Chapter 5 that there are deep connections between conservation laws and symmetries in Nature.

MOMENTUM

From Newton's second law it follows that if there is no net force on a particle, its momentum $\mathbf{p}=m \mathbf{v}$ is conserved, so its velocity \mathbf{v} is also constant. Conservation of momentum for a single particle simply means that a free particle (a particle with no force on it) moves in a straight line at constant speed. For a single particle, conservation of momentum is equivalent to Newton's first law.

For a system of particles, however, momentum conservation becomes non-
trivial, because it requires only the conservation of total momentum \mathbf{P}. When there are no external forces acting on a system of particles, the total momentum of the individual constituents remains constant, even though the momentum of each single particle may change:

$$
\begin{equation*}
\mathbf{P}=\sum_{i} \mathbf{p}_{i}=\text { constant } . \tag{1.28}
\end{equation*}
$$

As we saw earlier, this is the momentum of the center of mass of the system if we were to imagine the sum of all the constituent masses added up and placed at the center of mass. This relation can be very handy when dealing with several particles.

EXAMPLE 1-3: A wrench in space

We are sitting within a spaceship watching a colleague astronaut outside holding a wrench. The astronaut-plus-wrench system is initially at rest from our point of view. The angry astronaut (of mass M) suddenly throws the wrench (of mass m), with some unknown force. We then see the astronaut moving with velocity V. Without knowing anything about the force with which she threw the wrench, we can compute the velocity of the wrench. No external forces act on the system consisting of wrench plus astronaut, so its total momentum is conserved:

$$
\begin{equation*}
\mathbf{P}=M \mathbf{V}+m \mathbf{v}=\text { constant } \tag{1.29}
\end{equation*}
$$

where \mathbf{v} is the unknown velocity of the wrench. Since the system was initially at rest, we know that $\mathbf{P}=0$ for all time. We then deduce

$$
\begin{equation*}
\mathbf{v}=-\frac{M \mathbf{V}}{m} \tag{1.30}
\end{equation*}
$$

without needing to even stare at Newton's second law or any other secondorder differential equation.

ANGULAR MOMENTUM

Let a position vector \mathbf{r} extend from an origin of coordinates to a particle, as shown in Figure 1.7. The angular momentum of the particle is defined to be

$$
\begin{equation*}
\ell=\mathbf{r} \times \mathbf{p} \tag{1.31}
\end{equation*}
$$

Figure 1.7: The position vector for a particle. Angular momentum is always defined with respect to a chosen point from where the position vector originates.
the vector cross product of \mathbf{r} with the particle's momentum \mathbf{p}. Note that in a given inertial frame the angular momentum of the particle depends not only on properties of the particle itself, namely its mass and velocity, but also upon our choice of origin. Using the product rule, the time derivative of $\boldsymbol{\ell}$ is

$$
\begin{equation*}
\frac{d \boldsymbol{\ell}}{d t}=\frac{d \mathbf{r}}{d t} \times \mathbf{p}+\mathbf{r} \times \frac{d \mathbf{p}}{d t} . \tag{1.32}
\end{equation*}
$$

The first term on the right is $\mathbf{v} \times m \mathbf{v}$, which vanishes because the cross product of two parallel vectors is zero. In the second term, we have $d \mathbf{p} / d t=\mathbf{F}$ using Newton's second law, where \mathbf{F} is the net force acting on the particle. It is therefore convenient to define the torque \mathbf{N} on the particle due to \mathbf{F} as

$$
\begin{equation*}
\mathbf{N}=\mathbf{r} \times \mathbf{F} \tag{1.33}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbf{N}=\frac{d \ell}{d t} . \tag{1.34}
\end{equation*}
$$

That is, the net torque on a particle is responsible for any change in its angular momentum, just as the net force on the particle is responsible for any
change in its momentum. The angular momentum of a particle is conserved if there is no net torque on it.

Sometimes the momentum \mathbf{p} is called the "linear momentum" to distinguish it from the angular momentum $\boldsymbol{\ell}$. However, linear momentum and angular momentum are not two aspects of the same thing. They have different units and are conserved under different circumstances. The momentum of a particle is conserved if there is no net external force and the angular momentum of the particle is conserved if there is no net external torque. It is easy to arrange forces on an object so that it experiences a net force but no net torque, and equally easy to arrange them so there is a net torque but no net force. For example, if the force \mathbf{F} is parallel to \mathbf{r}, we have $\mathbf{N}=0$; yet there is a non-zero force.

There is another striking difference between momentum and angular momentum: in a given inertial frame, the value of a particle's momentum \mathbf{p} is independent of where we choose to place the origin of coordinates. But because the angular momentum $\boldsymbol{\ell}$ of the particle involves the position vector \mathbf{r}, the value of $\boldsymbol{\ell}$ does depend on the choice of origin. This makes angular momentum somewhat more abstract than momentum, in that in the exact same problem different people at rest in the same inertial frame may assign it different values depending on where they choose to place the origin of their coordinate system.

EXAMPLE 1-4: A particle moving in two dimensions with an attractive spring force

A block of mass m is free to move on a frictionless tabletop under the influence of an attractive Hooke's-law spring force $\mathbf{F}=-k \mathbf{r}$, where the vector \mathbf{r} is the position vector of the particle measured from the origin. We will find the motion $x(t), y(t)$ of the ball and show that the angular momentum of the ball about the origin is conserved.

The vector $\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}$, where x and y are the Cartesian coordinates of the ball and $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are unit vectors pointing in the positive x and positive y directions, respectively. Newton's second law $-k \mathbf{r}=m \ddot{\mathbf{r}}$ becomes

$$
\begin{equation*}
-k(x \hat{\mathbf{x}}+y \hat{\mathbf{y}})=m(\ddot{x} \hat{\mathbf{x}}+\ddot{y} \hat{\mathbf{y}}), \tag{1.35}
\end{equation*}
$$

which separates into the two simple harmonic oscillator equations

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=0 \quad \text { and } \quad \ddot{y}+\omega_{0}^{2} y=0 \tag{1.36}
\end{equation*}
$$

where $\omega_{0}=\sqrt{k / m}$. It is interesting that the x and y motions are completely independent of one another in this case; the two coordinates have been decoupled, so we can solve the equations separately. The solutions are

$$
\begin{equation*}
x=A_{1} \cos \left(\omega_{0} t+\varphi_{1}\right) \quad \text { and } \quad y=A_{2} \cos \left(\omega_{0} t+\varphi_{2}\right) \tag{1.37}
\end{equation*}
$$

showing that the ball oscillates simple harmonically in both directions. The four constants $A_{1}, A_{2}, \varphi_{1}, \varphi_{2}$ can be evaluated in terms of the four initial conditions $x_{0}, y_{0}, v^{x 0}, v^{y 0}$. The oscillation frequencies are the same in each direction, so orbits of the ball are all closed. In fact, the orbit shapes are ellipses centered at the origin, as shown in Figure 1.8 ${ }^{1}$. Note that in this two-dimensional problem, the motion of the ball is determined by four initial conditions (the two components of the position vector and the two components of the velocity vector) together with the known force throughout the motion. This is what is expected for two second-order differential equations.

The spring exerts a torque on the ball about the origin, which is $\mathbf{N}=$ $\mathbf{r} \times \mathbf{F}=\mathbf{r} \times-k \mathbf{r}=0$, since the cross product of any vector with itself vanishes. Therefore the angular momentum of the ball is conserved about the origin. In this case, this angular momentum is given by

$$
\begin{equation*}
\ell=(x \hat{\mathbf{x}}+y \hat{\mathbf{y}}) \times(m \dot{x} \hat{\mathbf{x}}+m \dot{y} \hat{\mathbf{y}})=(m x \dot{y}-m y \dot{x}) \hat{\mathbf{z}}, \tag{1.39}
\end{equation*}
$$

so the special combination $m x \dot{y}-m y \dot{x}$ remains constant for all time. That is certainly a highly non-trivial statement.

The angular momentum is not conserved about any other point in the plane, because then the position vector and the force vector would be neither parallel nor antiparallel. The angular momentum of a particle is always conserved if the force is purely central, i.e. if it is always directly toward or away from a fixed point, as long as that same point is chosen as origin of the coordinate system.

[^0]

Figure 1.8: A two-dimensional elliptical orbit of a ball subject to a Hooke's law spring force, with one end of the spring fixed at the origin.

We still have not used the conservation of angular momentum in this problem to our advantage, because we solved the full second-order differential equation. To see how we can tackle this problem without ever needing to stare at Newton's second law or any second-order differential equation, we need to first look at another very useful conservation law, energy conservation.

ENERGY

The energy of a particle is a third quantity that is sometimes conserved. Let \mathbf{F} be one of the forces acting on a particle. Define the work done by \mathbf{F} on the particle to be the line integral

$$
\begin{equation*}
W_{a b}=\int_{a}^{b} \mathbf{F} \cdot d \mathbf{s} \tag{1.40}
\end{equation*}
$$

as the particle moves between two points a and b by whatever path it happens to take. Here $d \mathbf{s}$ is a vector that points in the direction of the path at some point and whose magnitude $d s$ is an infinitesimal distance along the path at that point. The dot product $\mathbf{F} \cdot d \mathbf{s}=F d s \cos \theta$, where θ is the angle between the vectors \mathbf{F} and $d \mathbf{s}$, which shows that it is only the component of \mathbf{F} parallel to the path at some point that does work on the particle. Figure 1.9 illustrates the setup.

If we were to integrate Newton's second law along the path of a particle acted upon by a single force, we would write

$$
\begin{equation*}
W_{a b}=\int_{a}^{b} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} m \mathbf{a} \cdot d \mathbf{s} \tag{1.41}
\end{equation*}
$$

The right-hand side may be simplified further

$$
\begin{equation*}
\int_{a}^{b} m \mathbf{a} \cdot d \mathbf{s}=\int_{a}^{b} m \frac{d \mathbf{v}}{d t} \cdot d \mathbf{s}=\int_{a}^{b} m d \mathbf{v} \cdot \frac{d \mathbf{s}}{d t}=\int_{a}^{b} m d \mathbf{v} \cdot \mathbf{v} . \tag{1.42}
\end{equation*}
$$

In the last step, we moved the $d t$ to $d \mathbf{s}$ to change the measure of the integral to $d \mathbf{v}$. We can now easily integrate the right-hand side

$$
\begin{equation*}
\int_{a}^{b} m d \mathbf{v} \cdot d \mathbf{v}=\frac{1}{2} m v_{b}^{2}-\frac{1}{2} m v_{a}^{2} \tag{1.43}
\end{equation*}
$$

as can be easily verified by expanding the dot product $d \mathbf{v} \cdot \mathbf{v}=d v^{x} v^{x}+$ $d v^{y} v^{y}+d v^{z} v^{z}$. Defining Kinetic Energy as

$$
\begin{equation*}
T \equiv \frac{1}{2} m v^{2} \tag{1.44}
\end{equation*}
$$

we now have an "integral form" of Newton's second law

$$
\begin{equation*}
W_{a b}=T_{b}-T_{a} . \tag{1.45}
\end{equation*}
$$

That is, the work done by the force is the difference between the final and initial kinetic energies of the particle.

Often the work done by a particular force \mathbf{F} depends upon which path the particle takes as it moves from a to b. The frictional work done by air resistance on a ball as it flies from the bat to an outfielder depends upon how high it goes, that is, whether its total path length is short or long. There are other forces, however, like the static force of gravity, for which the work done is independent of the particle's path: For example, the work done by Earth's gravity on the ball is the same no matter how it gets to the outfielder. For such forces the work depends only upon the endpoints a and b. That implies that the work can be written as the difference

$$
\begin{equation*}
W_{a b}=-U(b)+U(a) \tag{1.46}
\end{equation*}
$$

between a "potential energy" function U evaluated at the final point b and the initial point a. Similarly, the work done by this force as the particle

Figure 1.9: The work done by a force on a particle is its line integral along the path traced by the particle.
moves from b to a third point c is $W_{b c}=-U(c)+U(b)$, so the work done as the particle moves all the way from a to c is

$$
W_{a c}=W_{a b}+W_{b c}=-U(b)+U(a)-U(c)+U(b)=-U(c)+U(a)(1.47)
$$

as expected, independent of the intermediate point b.
Forces \mathbf{F} for which the work $W_{a b}=\int_{a}^{b} \mathbf{F} \cdot d \mathbf{s}$ between any two points a and b is independent of the path, are said to be conservative. There are several tests for conservative forces that are mathematically equivalent, in that if any one of them is true the others are true as well. The conditions are
(1) $W_{a b}=\int_{a}^{b} \mathbf{F} \cdot d \mathbf{s}$ is path independent.
(2) The integral around any closed path $\oint \mathbf{F} \cdot d \mathbf{s}=0$.
(3) The curl of the force function vanishes: $\nabla \times \mathbf{F}=0$.
(4) The force function can always be written as the negative gradient of some scalar function $U: \mathbf{F}=-\nabla U$.

Often the third of these conditions makes the easiest test. For example, the curl of the uniform gravitational force $\mathbf{F}=-m g \hat{\mathbf{z}}$ is, using the determinant
expression for the curl,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \tag{1.48}\\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
F^{x} & F^{y} & F^{z}
\end{array}\right|=0,
$$

since each component of \mathbf{F} is zero or a constant. Therefore this force is conservative. On the other hand, the curl of the hypothetical force $\mathbf{F}=\alpha x y \hat{\mathbf{z}}$, where α is a constant, is

$$
\begin{align*}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
0 & 0 & \alpha x y
\end{array}\right| \\
& =\hat{\mathbf{x}} \frac{\partial}{\partial y}(\alpha x y)-\hat{\mathbf{y}} \frac{\partial}{\partial x}(\alpha x y)=\alpha(x \hat{\mathbf{x}}-y \hat{\mathbf{y}}) \neq 0 \tag{1.49}
\end{align*}
$$

so this force is not conservative, and does not possess a potential energy function.

The work done is equal to the difference between two potential energies, so it follows that the physics is exactly the same for a particle with potential energy $U(\mathbf{r})$ as it is for a potential energy $U(\mathbf{r})+C$, where C is any constant. For example, the potential energy of a particle of mass m in a uniform gravitational field g is $U_{\text {grav }}=m g h$, where h is the altitude of the particle. The fact that any constant can be added to U in this case is equivalent to the fact that it doesn't matter from what point the altitude is measured; the motion of a particle is the same whether we measure altitude from the ground or from the top of a building.

Putting all this together, for a system involving conservative forces, we can now write

$$
\begin{equation*}
W_{a b}=-U(b)-U(a)=T_{b}-T_{a} . \tag{1.50}
\end{equation*}
$$

Introducing a new quantity we call energy, we then write

$$
\begin{equation*}
E \equiv T+U \Rightarrow E_{b}=E_{a} \tag{1.51}
\end{equation*}
$$

that is energy as the sum of kinetic and potential energies is conserved in systems involving only conservative forces. Otherwise, we could write a more general statement

$$
\begin{equation*}
W_{a b}^{\text {noncons }}=E_{b}-E_{a} ; \tag{1.52}
\end{equation*}
$$

i.e. the work done by non-conservative forces measures the non-conservation of energy in the system. It has turned out to be very useful to expand the concept of energy beyond kinetic and potential energies, so in the case of nonconservative forces like friction, a decrease in the "mechanical energy" $T+U$ shows up in some other form, such as heat. That is, conservation of energy is more general than one might expect from classical mechanics alone; in addition to kinetic and potential energies, there is thermal energy, the energy of deformation, energy in the electromagnetic field, and many other forms as well. Energy is often a useful concept across many disparate physical systems. We will later on see a more appropriate and physical definition of the notion energy. For now however, the statement of conservation of $T+U$ will be very useful.

It is instructive to reverse this exercise by taking the time derivative of E,

$$
\begin{equation*}
\frac{d E}{d t}=\frac{d}{d t}\left(\frac{1}{2} m \mathbf{v} \cdot \mathbf{v}\right)+\frac{d U}{d t}=m \mathbf{v} \cdot \mathbf{a}+\mathbf{v} \cdot \nabla \mathbf{U} \tag{1.53}
\end{equation*}
$$

In the first term we used the product rule on $\mathbf{v} \cdot \mathbf{v}$, and in the second term we used the chain rule

$$
\begin{equation*}
\frac{d U}{d t}=\frac{\partial U}{\partial t}+\sum_{i} \frac{\partial U}{\partial x_{i}} \frac{d x^{i}}{d t}=\mathbf{v} \cdot \nabla U \tag{1.54}
\end{equation*}
$$

where we further assumed in the last step that U is a function of the coordinates only, $U(\mathbf{r})$, and not upon time or velocity. We now have

$$
\begin{equation*}
\frac{d E}{d t}=\mathbf{v} \cdot(m \mathbf{a})+\mathbf{v} \cdot \nabla U=\mathbf{v} \cdot \mathbf{F}+\mathbf{v} \cdot(-\mathbf{F})=0 \tag{1.55}
\end{equation*}
$$

where we used $\mathbf{F}=m \mathbf{a}$ and $\mathbf{F}=-\nabla U$, assuming that all the forces on the particle arise from the potential U and hence are conservative. We thus have come back full circle to Newton's second law. This process has made it clear however that the potential must only depend on the coordinates of the particle $U(\mathbf{r})$. Later on however, we will be able to extend this notion to certain forces involving velocity dependence such as the magnetic force.

EXAMPLE 1-5: A particle attached to a spring revisited

We want to demonstrate the power of conservation laws in the previous problem of a particle of mass m confined to a two-dimensional plane and attached to a spring of spring constant k (see Figure 1.8). The only force law is Hooke's law $\mathbf{F}=-k \mathbf{r}$. We can check that $\nabla \times \mathbf{F}=0$, and then find that the potential energy for this conservative force is

$$
\begin{equation*}
U(b)-U(a)=-\int_{a}^{b} \mathbf{F} \cdot d \mathbf{r}=-k \int_{a}^{b} \mathbf{r} \cdot d \mathbf{r} \Rightarrow U=\frac{1}{2} k r^{2} . \tag{1.56}
\end{equation*}
$$

The total energy is therefore

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}+\frac{1}{2} k r^{2} . \tag{1.57}
\end{equation*}
$$

The problem has circular symmetry, so it is helpful to use polar coordinates. The velocity of the particle is

$$
\begin{equation*}
\mathbf{v}=\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}} \tag{1.58}
\end{equation*}
$$

where r and θ are the polar coordinates (see Appendix A for a review of coordinate systems). We then have

$$
\begin{equation*}
E=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\frac{1}{2} k r^{2} . \tag{1.59}
\end{equation*}
$$

Since E is a constant, this would be a very nice first-order differential equation for $r(t)$ if we could get rid of the pesky $\dot{\theta}$ term. Angular momentum conservation comes to the rescue. We know

$$
\begin{equation*}
\mathbf{L}=\mathbf{r} \times(m \mathbf{v})=m r \hat{\mathbf{r}} \times(\dot{r} \hat{\mathbf{r}}+r \dot{\theta} \hat{\boldsymbol{\theta}})=m r^{2} \dot{\theta} \hat{\mathbf{z}}=\text { constant } \tag{1.60}
\end{equation*}
$$

We then can write

$$
\begin{equation*}
m r^{2} \dot{\theta}=L \Rightarrow \dot{\theta}=\frac{L}{m r^{2}} \tag{1.61}
\end{equation*}
$$

with L a constant. Putting this back into (1.59), we get

$$
\begin{equation*}
E=\frac{1}{2} m \dot{r}^{2}+\frac{L^{2}}{2 m r^{2}}+\frac{1}{2} k r^{2} \tag{1.62}
\end{equation*}
$$

which is a first-order differential equation that determines $r(t)$, from which we can find $\theta(t)$ using equation (1.61). We have thus solved the problem without ever dealing with a second-order differential equation arising from Newton's second law. In this case, this is not particularly advantageous,
given that the original second-order differential equations corresponded to harmonic oscillators. In general, however, tackling first-order differential equations is likely to be much easier.

It is instructive to analyze the boundary conditions and conservation law of this system. Newtons' second law gives are two second order differential equations in two dimensions. Each differential equations requires two boundary conditions to yield a unique solution. That's a total of four constants to determine in tackling the problem through second order differential equations. Energy conservation on the other hand provides us with a single first order differential equation that requires one boundary condition. But the value of energy E is another constant to be specified. So, that is two constants to fix. Angular momentum conservation gives us another first order differential equations with one boundary condition, plus the value L for the angular momentum. Hence, that's another two constants. The energy and angular momentum conservation equations thus require a total of four constant to yield a unique solution, as expected from the perspective of the original second order differential equations. The four boundary conditions of Newton's second law are hence directly related to the four constants to fix in solving the problem through conservation equations.

EXAMPLE 1-6: Newtonian gravity and its potential energy

Newton's law of gravity for the force on a 'probe' particle of mass m due to a 'source' particle of mass M is $\mathbf{F}=-\left(G M m / r^{2}\right) \hat{\mathbf{r}}$, where $\hat{\mathbf{r}}$ is a unit vector pointing from the source particle to the probe (see Figure 1.4). The minus sign means that the force is attractive, in the negative $\hat{\mathbf{r}}$ direction. We can check to see whether this force is conservative by taking its curl,

$$
\begin{equation*}
\nabla \times\left(-\frac{G M m}{r^{2}} \hat{\mathbf{r}}\right)=\frac{1}{r \sin \theta} \frac{\partial F^{r}}{\partial \varphi}-\frac{1}{r} \frac{\partial F^{r}}{\partial \theta}=0 \tag{1.63}
\end{equation*}
$$

where we use spherical coordinates throughout (see Appendix A for a review of coordinate systems). So Newton's gravitational force is conservative, and must therefore have a corresponding potential energy function

$$
\begin{equation*}
U(r)=-\int \mathbf{F} \cdot d \mathbf{r}=G M m \int \frac{d r}{r^{2}}=-\frac{G M m}{r}+\text { constant } \tag{1.64}
\end{equation*}
$$

Figure 1.10: Newtonian gravity pulling a probe mass m towards a source mass M.
where by convention we ignore the constant of integration, which in effect sets the potential energy to be zero at infinity $r \rightarrow \infty$.

EXAMPLE 1-7: Dropping a particle in spherical gravity

Armed with the potential energy expression due to a spherical gravitating body, the total energy of a probe particle of mass m, which is conserved, is

$$
\begin{equation*}
E=T+U(r)=\frac{1}{2} m v^{2}-\frac{G M m}{r}, \tag{1.65}
\end{equation*}
$$

where M is the mass of the body. Suppose that the probe particle is dropped from rest some distance r_{0} from the center of M, which we assume is so large that it does not move appreciably as the small mass m falls toward it. The particle has no initial tangential velocity, so it will fall radially with $v^{2}=\dot{r}^{2}$. Energy conservation gives

$$
\begin{equation*}
E=\frac{1}{2} m \dot{r}^{2}-\frac{G M m}{r} . \tag{1.66}
\end{equation*}
$$

The initial conditions are $r=r_{0}$ and $\dot{r}=0$, so it follows that $E=-G M m / r_{0}$.

Equation (1.66) is a first-order differential equation in $r(t)$. It is said to be a "first integral" of the second-order differential equation $\mathbf{F}=m \mathbf{a}$, which in this case is

$$
\begin{equation*}
-\frac{G M m}{r^{2}}=m \ddot{r} \tag{1.67}
\end{equation*}
$$

That is, if we want to find the motion $r(t)$ it is a great advantage to begin with energy conservation, because that equation already represents one integral of $\mathbf{F}=m \mathbf{a}$. Solving (1.66) for \dot{r},

$$
\begin{equation*}
\dot{r}= \pm \sqrt{\frac{2}{m}\left(E+\frac{G M m}{r}\right)}= \pm \sqrt{2 G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)} \tag{1.68}
\end{equation*}
$$

We have to choose the minus sign, because when the particle is released from rest it will subsequently fall toward the origin with $\dot{r}<0$. Dividing the equation through by the right-hand side and integrating over time,

$$
\begin{equation*}
\int_{r_{0}}^{r} \frac{d r \sqrt{r}}{\sqrt{1-r / r_{0}}}=-\sqrt{2 G M} \int_{0}^{t} d t=-\sqrt{2 G M} t \tag{1.69}
\end{equation*}
$$

At this point we say that the problem has been reduced to quadrature, an old-fashioned phrase that simply means that all that remains to find $r(t)$ (or in this case $t(r)$) is to evaluate an indefinite integral. If we are lucky, the integral can be evaluated in terms of known functions, in which case we have an analytic solution. If we are not so lucky, the integral can at least be evaluated numerically to any level of accuracy we need. An analytic solution to the integral in equation (1.69), using the substitution $r=r_{0} \sin ^{2} \theta$, gives

$$
\begin{equation*}
t(r)=\sqrt{\frac{r_{0}^{3}}{2 G M}}\left[\frac{\pi}{2}-\sin ^{-1} \sqrt{\frac{r}{r_{0}}}+\sqrt{\frac{r}{r_{0}}} \sqrt{1-\frac{r}{r_{0}}}\right] \tag{1.70}
\end{equation*}
$$

from which we can find the time it takes to fall to r given some initial value r_{0}. We cannot solve explicitly for $r(t)$ in this case, because the right-hand side is a transcendental function of r. Note that the constant r_{0} in this equation is directly related to the energy E through equation (1.68).

The problem is much simplified if the particle falls from a great altitude to a much smaller altitude, so that $r \ll r_{0}$, in which case the first term in equation (1.70) is much bigger than the others. For example, the time it
takes an astronaut to fall from rest at radius r_{0} to the surface of an asteroid of radius R, where $r_{0} \gg R$, is essentially

$$
\begin{equation*}
t=\frac{\pi}{2} \sqrt{\frac{r_{0}^{3}}{2 G M}} \tag{1.71}
\end{equation*}
$$

which is independent of R ! This insensitivity to the asteroid radius is due to the fact that nearly all of the travel time is spent at large radii, during which the astronaut is moving slowly. Changes in the asteroid radius R affect the overall travel time very little, because the astronaut is falling so fast near the end. On the other hand, the travel time is clearly quite sensitive to the initial position r_{0}.

EXAMPLE 1-8: Potential energies and turning points for positive power-law forces

A particle moves in one dimension subject to the power-law force $F=-k x^{n}$, where the coefficient k is positive, and n is a positive integer. Let us find the potential energy of the particle and also the maximum distance $x_{\max }$ it can reach from the origin, in terms of its maximum speed $v_{\max }$. The maximum distance is the "turning point" of the particle, because as the particle approaches this position it slows down, stops at $x_{\max }$, and turns around and heads in the opposite direction.

The potential energy of the particle is the indefinite integral

$$
\begin{equation*}
U=-\int^{x} F(x) d x=-\int^{x}\left(-k x^{n}\right) d x=\frac{k}{n+1} x^{n+1} \tag{1.72}
\end{equation*}
$$

plus an arbitrary constant of integration, which we will choose to be zero. Two of these potential energy functions, one with odd n and one with even n, illustrate the range of possibilities, as shown in Figure 1.11. The case $n=1$, corresponding to a linear restoring force, corresponds to a Hooke's-law spring, where k is the spring constant and the potential energy is $U=(1 / 2) k x^{2}$. In this case the lowest possible energy is $E=0$, when the particle is stuck at $x=0$. There are two turning points for energies $E>0$, one at the right and one at the left.

The quadratic force with $n=2$ has a cubic potential $U=(1 / 3) k x^{3}$ is positive for $x>0$ and negative for $x<0$, also as shown. Note that the slope

Figure 1.11: Potential energy functions for selected positive powers n. A possible energy E is drawn as a horizontal line, since E is constant. The difference between E and $U(x)$ at any point is the value of the kinetic energy T. The kinetic energy is zero at the "turning points", where the E line intersects $U(x)$. Note that for $n=1$ there are two turning points for $E>0$, but for $n=2$ there is only a single turning point.
of this potential is everywhere positive except at $x=0$, so the force on any particle at $x \neq 0$ is toward the left, since $F=-d U / d x$ is then negative. So particles at positive x are pulled toward the origin, while particles at negative x are pushed away from the origin in this case.

Energy is conserved for this entire set of forces, where

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}+\left(\frac{k}{n+1}\right) x^{n+1} \tag{1.73}
\end{equation*}
$$

The potential energy increases with increasing positive x, so the maximum speed of the particle is at the origin, where $E=(1 / 2) m v_{\max }^{2}$. The speed goes to zero at the maximum value of x attainable, i.e., where $E=k x_{\text {max }}^{n+1} /(n+1)$. Eliminating E and solving for $x_{\text {max }}$,

$$
\begin{equation*}
x_{\max }=\left(\frac{n+1}{2 k}\right)^{1 /(n+1)}\left(v_{\max }\right)^{2 /(n+1)} . \tag{1.74}
\end{equation*}
$$

For the spring force, with $n=1, x_{\max }$ is directly proportional to $v_{\max }$, so if we double the particle's velocity at the origin that will double the maximum x it can achieve.

Note that the conservation of energy equation (1.73) can be solved for $v \equiv \dot{x}$ to give

$$
\begin{equation*}
\dot{x}= \pm \sqrt{\frac{2}{m}\left(E-\left(\frac{k}{n+1}\right) x^{n+1}\right)} \tag{1.75}
\end{equation*}
$$

which is a first-order differential equation. Dividing by the right-hand side and integrating over time yields

$$
\begin{equation*}
\int \sqrt{\frac{d x}{E-(k /(n+1)) x^{n+1}}}= \pm \sqrt{\frac{2}{m}} \int d t= \pm \sqrt{\frac{2}{m}} t+C \tag{1.76}
\end{equation*}
$$

where C is a constant of integration: The problem has been reduced to quadrature. For some values of n the integral on the left can be evaluated in terms of standard functions; this includes the cases $n=-1,0$, and +1 , for example. For other values of x the integral can be evaluated numerically. Note that conservation of energy results in a first-order differential equation, so specifying the constant of integration C is equivalent to specifying one initial condition.

Rather than integrating equation (1.73), which leads to equation (1.76), we can differentiate the equation instead. The time derivative of equation (1.73) is

$$
\begin{equation*}
m \dot{x} \ddot{x}+\left(\frac{k}{n+1}\right)(n+1) x^{n} \dot{x}=0 \tag{1.77}
\end{equation*}
$$

since $d E / d t=0$. The velocity \dot{x} is not generally zero, so we can divide it out, leaving

$$
\begin{equation*}
m \ddot{x}=-k x^{n} \tag{1.78}
\end{equation*}
$$

which we recognize as $m a=F$ for the given force $F=-k x^{n}$. That is, the time derivative of the energy conservation first-order differential equation is simply $F=m a$, which is a second-order differential equation. Often energy conservation serves as a "first integral of motion", halfway toward a complete solution of the second-order equation $F=m a$.

1.5 Forces of nature

The hallmark of Newtonian mechanics - the relationship $\mathbf{F}=m \mathbf{a}$ - is only part of the physical content of a mechanics problem. To determine the dynamics of a particle, we still need the left-hand side of the equation: we need an independent specification of the forces. This is a separate physics statement that we need to discover and learn about through experimentation and additional theoretical considerations. We may then be tempted to ask the bold question: what are all of the possible forces that can arise on the lefthand side of Newton's second law? Surprisingly, this question has a complete answer, an exhaustive and finite catalogue of possibilities.

To date, we are aware of four, and only four, fundamental forces in nature - of which only two can be used in classical, Newtonian mechanics. For the sake of completeness, let us list all four:

1. The electromagnetic force can be attractive or repulsive, and acts only on particles that carry a certain mysterious attribute we call 'electric charge'. This force is relevant from subatomic length scales to planetary length scales, and it plays a role in virtually every physical setting.
2. The gravitational force is an omni-present, attractive force in classical physics, that acts on anything that has mass. Gravity is by far the weakest of the four forces, but at macroscopic length scales it is very noticeable nonetheless if objects are essentially electrically neutral, so that the much stronger electromagnetic force vanishes.
3. The weak force is subatomic in nature, acting only over very short distances (around 10^{-15} meters!), where it is essential to use quantum mechanics; the weak force therefore plays no role in typical classical mechanics problems. The weak force is important for understanding radioactivity, neutrinos, and the ever-elusive Higgs boson particle. We have also learned recently that the weak force is closely related to electromagnetism. The electromagnetic and weak forces collectively are sometimes referred to as the electroweak force.
4. The strong force, which is also a force of subatomic relevance (around 10^{-18} meters!), binding quarks together and underlying all nuclear energy. This is the strongest of all the forces, but in spite of its great importance it is not directly relevant to classical mechanics.

Gravity and electromagnetism are the two mainstays of classical mechanics. In a setting where the strong and weak forces play a relevant dynamical role, the framework of classical mechanics itself is typically already faltering and a full extension to quantum mechanics is needed. Hence, our classical mechanics world will deal primarily with gravitational and electromagnetic forces. How about the friction and spring forces encountered in the previous examples, the good old normal force, the tension force in a rope, and a myriad of other force laws that make prominent appearances on the left-hand side of Newton's second law? These are all macroscopic effective forces, not fundamental ones. Microscopically, they originate entirely from the electromagnetic force law. For example, when two surfaces in contact rub against each other, the atoms at the interface interact microscopically through Coulomb's law of electrostatics. When we add a large number of these tiny forces, we have an effective macroscopic force that we call friction. The microscopic details can be tucked into one single parameter, the coefficient of friction. Similarly, the effect of a large number of liquid molecules on a bacterium average out into a simple force law, $F=-b v$, where b is the only parameter left over from the detailed microscopic interactions - which are once again electromagnetic in origin. Contact forces, as they are called, are hence approximate statements and originate from the electromagnetic force law.

The reader may rightfully be surprised that complicated microscopic dynamics can lead to rather simple effective force laws - often described by a few macroscopic parameters. This is a rather general feature of the natural laws. When microscopic complexity is averaged over a large number of particles and length scales, it is expected that the resulting macroscopic system is described through simpler laws with fewer parameters. This is not supposed to be obvious, although it may feel intuitive. Realization of its significance and implications in physics underly several physics Nobel prizes in the late twentieth century ${ }^{2}$.

[^1]
1.6 Dimensional analysis

Dimensional reasoning is a powerful tool that can help us learn how one quantity depends upon others. The secret is that in classical mechanics, both sides of an equation must have the same dimensions of mass M, length L, and time T. All other quantities can be expressed in terms of these three. For example, the dimensions of momentum (which we will write as $[p]$, with square brackets) are $M L / T$, and the dimensions of energy are $[E]=M L^{2} / T^{2}$.

For example, suppose we hold up a ball, drop it from rest, and then seek to find its momentum when it strikes the ground. The first step is to ask "what would the momentum likely depend upon?" Using physical intuition, it seems reasonable that the momentum might depend upon the ball's mass m, the height h from which it is dropped, and the acceleration of gravity g. We are not sure how it depends upon these quantities, however. The next step is to compare dimensions. The dimensions are $[p]=M L / T,[m]=[M],[g]=$ L / T^{2}, and $[h]=L$. The only way to get the " M " in momentum is to suppose that p is directly proportional to m, because neither g nor h contains a dimension of mass. Then the only way to get the $1 / T$ in momentum is to suppose that p is proportional to \sqrt{g}. The product $m \sqrt{g}$ has the dimensions $(M / T) \sqrt{L}$, which only needs to be multiplied by \sqrt{h} to achieve the correct dimensions for momentum. That is, the momentum when the ball strikes the ground must have the dependence

$$
\begin{equation*}
p=k m \sqrt{g h} \tag{1.79}
\end{equation*}
$$

where k is some dimensionless constant. Dimensional reasoning alone cannot give us this constant, so in fact we still do not know what the momentum of the ball is when it reaches the ground. What we do know, however, is that if the momentum at the ground of a particular dropped ball is p_{0}, the momentum at the ground of a similar ball dropped from twice the height will be $\sqrt{2} p_{0}$, or the momentum of a ball dropped on the Moon from the original height will be $p_{0} / \sqrt{6}$, since gravity on the Moon is only $1 / 6^{\text {th }}$ that on Earth.

Note that this particular problem is easily solved exactly using $\mathbf{F}=m \mathbf{a}$, giving the same equation while providing the value $k=\sqrt{2}$. Dimensional analysis, however, works also in much more complicated problems where the proportionality constant may be more difficult to find.

In general, we can solve such problems by writing a general relation such as

$$
\begin{equation*}
p=k m^{\alpha} g^{\beta} h^{\gamma} \tag{1.80}
\end{equation*}
$$

where α, β, and γ are constants to be determined. We then expand everything in terms of mass, length, and time

$$
\begin{equation*}
\frac{M L}{T} \sim M^{\alpha} \frac{L^{\beta}}{T^{2 \beta}} L^{\gamma} \tag{1.81}
\end{equation*}
$$

yielding simple equations for α, β, and γ

$$
\begin{equation*}
1=\alpha \quad 1=\beta+\gamma \quad-1=-2 \beta, \tag{1.82}
\end{equation*}
$$

confirming that $\alpha=1, \beta=1 / 2$, and $\gamma=1 / 2$.

EXAMPLE 1-9: Find the rate at which molasses flows through a narrow pipe

By flow rate, we means the volume/second (with dimensions [flow rate] $=$ $\left.L^{3} / T\right)$ that passes though a pipe. We expect that this depends upon the radius of the pipe, with $[r]=L$, since a wider pipe should allow more fluid to flow than a narrower one. It should also depend upon friction within the fluid itself, and between the fluid and sides of the pipe. Friction in a fluid is characterized by its viscosity η, with dimensions $[\eta]=M / L T$, and with values that can be found in tables. ${ }^{3}$ The greater the viscosity, the greater the friction, and the lower the flow rate should be: molasses or honey (with high viscosity) should flow more slowly than a light oil (with low viscosity). Finally, the flow rate should also depend upon how hard one pushes on the fluid; i.e., the pressure difference ΔP between one end of the pipe and the other. More precisely, it should depend upon the pressure difference/unit length of pipe, since it makes sense that the viscous friction must be overcome by the pressure gradient within the pipe. The dimensions of pressure are [force/area] $=\left(M L / T^{2}\right] / L^{2}=M /\left(L T^{2}\right)$, so the dimensions of pressure per unit length are $[\Delta P / \ell]=M /\left(L^{2} T^{2}\right)^{4}$.

[^2]Now we can formally calculate, using dimensional analysis, how the volume per second of the flow depends upon r, η, and $\Delta P / \ell$, by taking arbitrary powers of each and finding the powers by matching dimensions on both sides. That is,

$$
\begin{equation*}
\text { flow volume } / \sec =k r^{\alpha} \eta^{\beta}(\Delta P / \ell)^{\gamma} \tag{1.83}
\end{equation*}
$$

where k is a dimensionless constant. Therefore dimensionally,

$$
\begin{equation*}
\frac{L^{3}}{T}=L^{\alpha}\left(\frac{M}{L T}\right)^{\beta}\left(\frac{M}{L^{2} T^{2}}\right)^{\gamma} \tag{1.84}
\end{equation*}
$$

We match exponents in turn for M, L, and T : That is,

$$
\text { mass: } 0=\beta+\gamma \quad \text { length: } 3=\alpha-\beta-2 \gamma \quad \text { time: }-1=-\beta-2 \gamma(1.85)
$$

From the first of these we learn that $\gamma=-\beta$, so then from the third equation we find that $\gamma=-\beta=1$. Finally, the second equation tells us that $\alpha=$ $3+\beta+2 \gamma=4$. Thus the equation for the flow rate through a pipe is

$$
\begin{equation*}
\text { flow volume } / \mathrm{sec}=k\left(\frac{\Delta P / \ell}{\eta}\right) r^{4} \tag{1.86}
\end{equation*}
$$

Again, dimensional analysis alone cannot tell us the numerical value of the dimensionless number k. However, we have learned a lot. Most spectacularly, we have learned that the flow rate of a highly viscous fluid is not proportional to the cross-sectional area of the pipe, but to the fourth power of the radius: A pipe of twice the radius will transport sixteen times the volume of fluid. This formula corresponds to what is called Poiseuille flow, and an exact analytic calculation shows that the constant $k=6 \pi$.

We have carried out the dimensional analysis here in a rather formal way; one can often speed up the process without using arbitrary powers like α, β, and γ. Note from equation (1.86) that the flow rate must depend upon the ratio $(\Delta P / \ell) / \eta$ to cancel out the dimension of mass, so we can rewrite equation (1.86) as

$$
\begin{equation*}
\frac{L^{3}}{T}=L^{\alpha}\left(\frac{M}{L^{2} T^{2}} \times \frac{L T}{M}\right)^{\gamma}=L^{\alpha}\left(\frac{1}{L T}\right)^{\gamma} \tag{1.87}
\end{equation*}
$$

from which it is clear that $\gamma=1$ to obtain the needed $1 / T$ dimension, and so then $\alpha=4$ to obtain the L^{3}.

1.7 Synopsis

So much for our very brief summary of Newtonian mechanics. Particles obey Newton's laws of motion, and depending upon the nature of the forces on a particle, one or another of momentum, angular momentum, and energy may be conserved. The momentum of a particle is conserved if there is no net force on it, while the angular momentum of the particle is conserved if there is no net torque on it. Energy is conserved if all the forces acting are conservative and time independent; i.e., if the work done by each force is independent of the path of the particle. Similar laws apply to systems of particles.

Given the forces on a particle together with its initial position and velocity, a classical particle moves along a single, precise path. That is the vision of Isaac Newton: particles follow deterministic trajectories. When viewed from an inertial frame, a particle moves in a straight line at constant speed unless a net force is exerted on it, in which case it accelerates according to $\mathbf{a}=\mathbf{F} / m$.

We have required that the fundamental laws of mechanics obey what is called the principle of relativity, which means that if a law is valid in one inertial frame it is valid in all inertial frames. According to the principle, there is no preferred inertial frame: the fundamental laws can be used by observers at rest in any one of them. This physical statement can be translated into a mathematical statement that given a mathematical transformation of coordinates and other quantities from one frame to another, the fundamental equations should look the same in all inertial frames. We have assumed that the Galilean transformation is the correct transformation of coordinates, and have shown that Newton's laws are invariant under that transformation, if any particular force applied is the same in all inertial frames. It is therefore consistent to take Newton's laws as fundamental laws of mechanics.

There is a problem, however. The fundamental laws of electromagnetism are not Galilean invariant. Therefore something has to give, either the universality of Maxwell's equations of electromagnetism, or the Galilean transformation. In 1905 Albert Einstein decided that it is the Galilean transformation that has to go, which then necessarily compromises our entire understanding of the fundamental laws of mechanics. We will begin to explore the effects of Einstein's ideas in Chapter Two.

1.8 Exercises and Problems

PROBLEM 1-1 : A stream flows at speed $v_{W}=0.50 \mathrm{~m} / \mathrm{s}$ between parallel shores a distance $D=35 \mathrm{~m}$ apart. A swimmer swims at speed $v_{s}=1.00 \mathrm{~m} / \mathrm{s}$ relative to the water. Use the Galilean velocity transformation to answer the following questions. (a) If the swimmer swims straight toward the opposite shore, i.e., in a direction perpendicular to the shoreline as seen by the swimmer, how long does it take her to reach the opposite shore, and how far downstream is she swept? (b) If instead the swimmer wishes to reach the opposite shore at a spot straight across the stream, at what angle should she swim relative to the stream flow direction, so as to arrive in the shortest time? What is this shortest time?

PROBLEM 1-2 : A river of width D flows at uniform speed V_{0}. Swimmers A and B, each of whom can swim at speed V_{s} relative to the water, decide to race one another beginning at the same spot on the shore. Swimmer A swims downstream a distance D relative to the shore, and immediately swims back upstream to the starting point. Swimmer B swims to a point diametrically opposite the starting point on the opposite shore, and then swims back. Assume $v_{s}>V_{0}$. Find the total time for each swimmer. Who wins the race?

PROBLEM 1-3 : An ultralight aircraft is 5.0 km due west of the landing field. It can fly $25 \mathrm{~km} / \mathrm{hr}$ in stationary air. However, the wind is blowing at $25 \mathrm{~km} / \mathrm{hr}$ from the southwest at a 60° angle to the direction of the landing field. (a) At what angle to the east must the pilot aim her craft to reach the landing field? (b) How long will it take her to reach the landing field if she flies as described?

PROBLEM 1-4 : A hailstone of mass m is subject to a downward gravitational force $m g$ and an upward force due to air resistance, which we will model here as $F_{\text {drag }}=-k v^{2}$, where k is a constant and v is the speed of the hailstone relative to the air: the minus sign indicates that the drag force is opposite to the direction of motion. If the model hailstone starts at rest at height h, (a) how long does it take to reach the ground, and (b) what is its speed just before it strikes the ground?

PROBLEM 1-5 : Write out the most general solutions of the (a) overdamped (b) underdamped (c) critically damped harmonic oscillator, expressing in each case the arbitrary constants in terms of the oscillator's initial position x_{0} and velocity v_{0}.

PROBLEM 1-6 : Planets have roughly circular orbits around the Sun. Using
the table below of the orbital radii and periods of the inner planets, how does the centripetal acceleration of the planets depend upon their orbital radii? That is, find the exponent n in $a=$ constant $\times r^{n}$. (Note that $1 \mathrm{~A} . \mathrm{U} .=1$ astronomical unit, the mean Sun-Earth distance.)

planet	mean orbital radius (A.U.)	period (years)
Mercury	0.387	0.241
Venus	0.723	0.615
Earth	1.000	1.000
Mars	1.523	1.881

PROBLEM 1-7 : A chain is tied tightly between two trees and a force F_{0} is applied at right angles to the chain at its midpoint. With the chain in equilibrium, with the ends of the chain at angle θ from the straight line between the trees, what is the tension in the chain?

PROBLEM 1-8 : A rope of mass/length λ is in the shape of a circular loop of radius R. If it is made to rotate about its center with angular velocity ω, find the tension in the rope. Hint: consider a small piece of the rope to be a "particle."

PROBLEM 1-9 : One end of a string of length ℓ is attached to a small ball, and the other end is tied to a hook in the ceiling. A nail juts out from the wall, a distance d below the hook. With the string straight and horizontal, the ball is released. When the string becomes vertical it meets the nail, and then the ball swings upward until it is directly above the nail. (a) What speed does the ball have when it reaches this highest point? (b) Find the minimum value of d, as a fraction of ℓ, such that the ball can reach this point at all.

PROBLEM 1-10 : A damped oscillator consists of a mass m attached to a spring k, with frictional damping forces. If the mass is released from rest with amplitude A, and after 100 oscillations the amplitude is $A / 2$, what is the total work done by friction during the 100 oscillations?

PROBLEM 1-11 : Half of a chain of total mass M and length L is placed on a frictionless table top, while the other half hangs over the edge. If the chain is released from rest, what is the speed of the last link just as it leaves the table top?

PROBLEM 1-12 : (a) A neutron in a nuclear reactor has a head-on collision with a carbon nucleus, part of the graphite "moderator." The carbon nucleus is
initially at rest, and has 12 times the mass of a neutron. What fraction of the neutron's initial speed is lost in the collision? (b) If a neutron collides head-on with a deuteron $\left(m_{d}=2 m_{n}\right)$ used as a moderator in a different reactor, what fraction of the neutron's initial speed is lost? (Slower neutrons are more apt to cause nuclear fission in the fissionable uranium nucleus ${ }^{235} \mathrm{U}$, and less likely to be lost by absorption in ${ }^{238} \mathrm{U}$; hence the need for moderators.) Assume elastic (i.e., kinetic-energy conserving) collisions.

PROBLEM 1-13: Consider an arbitrary power-law central force $\mathbf{F}(\mathbf{r})=k r^{n} \hat{\mathbf{r}}$, where k and n are constants and r is the radius in spherical coordinates. Prove that such a force is conservative, and find the associated potential energy of a particle subject to this force.

PROBLEM 1-14 : Estimate the radius (in meters) of the largest spherical asteroid that an astronaut could escape from by jumping.

PROBLEM 1-15 : An overdamped oscillator is released at $x=x_{0}$ with initial velocity v_{0}. What is the maximum number of times the oscillator can subsequently pass through $x=0$?

PROBLEM 1-16 : The potential energy of a mass m on the end of a Hooke'slaw spring of force constant k is $(1 / 2) k x^{2}$. If the maximum speed of the mass subject to this potential energy is v_{0}, what are the turning points of the motion?

PROBLEM 1-17 : A simple pendulum is constructed by hanging a bob of mass m on the end of a light cord of length ℓ, pulling it to one side by angle θ_{0} from the vertical, and then letting it swing back and forth. We expect that the period P of the pendulum might depend on any or all of m, ℓ, and θ_{0}, and also the local gravitational field strength g. Using dimensional analysis, find how P depends upon m, ℓ, and g. (The angular amplitude θ_{0} is dimensionless, so we cannot learn how P depends on θ_{0} using dimensional analysis alone.)

PROBLEM 1-18 : The velocity of waves on the surface of a lake depends upon gravity g and the depth h of the lake, as long as the wavelength of the waves satisifies $\lambda \gg h$, corresponding to what is called "shallow water waves". If a traveling wave has velocity v_{0} and subsequently encounters a part of the lake that is twice as deep, by what factor will the wave velocity be changed?

PROBLEM 1-19 : The velocity of waves on the surface of a lake depends upon gravity g and the wavelength λ as long as the depth of the lake h satisfies $h \gg \lambda$,
corresponding to what is called "deep water waves". If we were to increase the wavelength by a factor of two, by what factor would the wave velocity be changed?

PROBLEM 1-20 : Capillary waves on the surface of a liquid come about because of the liquid's surface tension σ, which has dimensions M / T^{2}. The velocity of capillary waves depends upon σ and also upon the wavelength λ and the density ρ of the liquid. Two capillary waves on the same liquid have wavelengths λ_{1} and $\lambda_{2}=2 \lambda_{1}$. What is the ratio of their velocities?

PROBLEM 1-21 : The Planck length ℓ_{p} depends upon Planck's constant \hbar, Newton's constant of gravity G, and the speed of light c. If Planck's constant were twice as large as it actually is, how would that affect ℓ_{p} ? How would it affect the Planck time t_{p} and Planck mass m_{p}, also both defined in terms of the same three fundamental constants? Taking the proportionality constant to be unity in each case (which is how they are actually defined), how large are the Planck length, mass, and time numerically in SI units (kilograms, meters, seconds)?

PROBLEM 1-22 : Two very flat parallel metal plates, with a vacuum between them and surrounding them, are attracted to one another by what is called the Casimir force, as predicted by quantum field theory. This force is proportional to the area A of each plate, and also depends upon the distance d between the plates, the speed of light c, and Planck's constant (divided by 2π) \hbar. If the distance d is reduced by half, does the Casimir force increase or decrease? By what factor?

PROBLEM 1-23: A ball of mass m is tossed straight upward from the ground with velocity v_{0}. The time it takes for it to rise and fall back to the ground might depend upon its mass m, v_{0}, and the gravitational field g. If v_{0} were doubled, by what factor would the time above ground increase? What would happen in m were doubled, keeping v_{0} and g the same?

PROBLEM 1-24 : Two astronauts are instantaneously at rest above a spherical asteroid of mass m and radius R. One astronaut is at distance r and the other at distance $2 r$ from the asteroid's center, where $r \ll R$. If it takes time T_{0} for the first astronaut to fall to the asteroid, about how long does it take the second to fall?

PROBLEM 1-25 : An exploding nuclear bomb creates a rapidly-expanding shock wave in the air surrounding the blast. Within the shock wave the air glows brightly, because it has been strongly heated, giving the appearance of a fireball. The radius R of the expanding ball of hot air depends upon time t, the energy E of
the blast, and the density ρ of the air. (It might depend also upon the ambient air pressure, but to a good approximation it does not, because the ambient pressure is so much smaller than the pressures created by the blast.) (a) Using dimensional reasoning, find out how R depends upon t, E, and ρ. (b) If the shock wave has radius R_{0} at time 0.01 s , what is its radius at 0.1 s ? (c) The picture shows the fireball of the Trinity test, the first nuclear explosion, at 05.30 hours, 16 July 1945, Alamogordo, N. M., at time 0.025 s after detonation. The diameter is about 250 m , as shown. Estimate the energy of the blast in joules and in equivalent tonnes of TNT, assuming the dimensionless coefficient in the expression for $R(t, E, \rho)$ is unity (the coefficient has been calculated to be 1.003). The explosive energy of one ton of TNT is $4.2 \times 10^{9} \mathrm{~J}$. [Pictures of the first explosion were published in Life Magazine. Using dimensional reasoning, several physicists around the world deduced the yield of the explosion.] (INCLUDE PHOTO)

PROBLEM 1-26 : Steady rain falls at constant speed v^{r} straight down as observed by a pedestrian standing on a sidewalk. A bus travels along the horizontal street at speed v_{b}. (a) At what angle θ to the vertical do the raindrops fall, as seen by the bus driver? (b) Suppose the bus has no windshield, leaving a hole in the flat, vertical front of the bus. The driver wants to travel forward at constant speed in a straight line from point A to point B. To minimize the total amount of water entering through the hole, should the driver drive the bus very slowly, as quickly as possible, or how?

PROBLEM 1-27: An object of mass m is subject to a drag force $F=-k v^{n}$, where v is its velocity in a medium, and k and n are constants. If the object starts with velocity v_{0} at time $t=0$, find its subsequent velocity as a function of time.

PROBLEM 1-28 : A space traveler pushes off from his coasting spaceship with relative speed v_{0}; his mass and spacesuit have mass M, and he is carrying a wrench of mass m. Twenty minutes later he decides to return, but his thruster doesn't work. In another forty minutes his oxygen supply will be exhausted, so he immediately throws the wrench away from the ship at speed v_{w} relative to himself prior to the throw. (a) What then is his speed relative to the ship? (b) In terms of given parameters, what is the minimum value of v_{w} needed so he will return in time?

PROBLEM 1-29: A neutron of mass m and velocity v_{0} collides head-on with $\mathrm{a}_{92}^{235} \mathrm{U}$ isotope of mass M at rest in a nuclear reactor, and the neutron is absorbed to form ${ }_{92}^{236} \mathrm{U}$. (a) Find the velocity v_{A} of the ${ }_{92}^{236} \mathrm{U}$ isotope in terms of m, M, and v_{0}. (b) The ${ }_{92}^{236} \mathrm{U}$ isotope subsequently fissions into two isotopes of equal mass,
each emerging at angle θ to the forward direction. Find the speed v_{B} of each final isotope in terms of given parameters.

PROBLEM 1-30 : It typically takes about 10 months for a spacecraft journey from Earth to Mars, and because of the loss of bone mass and other physiological problems it may be worthwhile providing an artificial gravity for humans to make the trip. One proposal is to attach the spacecraft (of mass M) to one end of a straight cable of length ℓ, attach an equal-mass counterweight to the other end, and then make the entire assembly rotate about the center of the cable with angular velocity ω. (a) Find the effective gravity within the spacecraft in terms of given parameters. (b) If the cable has negligible mass, find the tension within it as a function of the distance r from its center. (c) If instead the cable has constant mass per unit length λ, find the tension within this cable as a function of r.

PROBLEM 1-31 : A circular hoop of wire of radius R is oriented vertically, and is then forced to rotate with angular velocity ω about a vertical axis through its center. A small bead of mass m slides frictionlessly on the hoop. There is a downward gravitational field g. (a) Show that if $\omega>\sqrt{g / R}$, there are four different locations on the hoop for which the bead can be in equilibrium. Find the angles θ for these four locations, where θ is the angle of the point up from the bottom of the hoop, measured between the vertical and a radial line from the center of the hoop. (b) Show that if $\omega<\sqrt{g / R}$, there are only two equilibrium positions. Where are they?

PROBLEM 1-32: A particle of mass m is subject to the force $F=\alpha \sin (k x)$. (a) If the maximum value of the corresponding potential energy is α / k, what are the turning points for a particle of energy $E=\alpha / 2 k$? (b) Find the speed of the particle as a function of position, if the particle starts at rest at one of the turning points. (c) Find an expression for the position of the particle as a function of time.

PROBLEM 1-33 : Show that if a mass distribution is spherically symmetric, the gravitational field inside it is directed radially inward, and its magnitude at a radius r from the center is simply $G M(r) / r^{2}$, where $M(r)$ is the mass within the sphere whose radius is r.

PROBLEM 1-34 : A non-rotating uniform-density spherical asteroid has mass M and radius R. (a) If a straight tunnel is drilled through the asteroid from one side to the other, which passes through the asteroid's center, how long would it take an astronaut to fall from one end of the tunnel to the other and back to the starting point again, by simply stepping into the tunnel at one end? (b) If a
different straight tunnel is drilled through the same asteroid, where this time the tunnel misses the asteroid's center by a distance $R / 2$, how long would it take the astronaut to fall from one end to the other and back, assuming there is no friction between the sides of the tunnel and the astronaut? (c) Now suppose that instead of falling through the tunnel, the astronaut is given an initial tangential velocity of just the right magnitude so the astronaut is inserted into circular orbit just above the surface. How long will it take the astronaut to return to the starting point in this case?

PROBLEM 1-35 : Four mathematically equivalent conditions for a force to be conservative are given in the chapter. Select one of the conditions and suppose that it is valid for some force \mathbf{F}. Show that each of the other three conditions is a necessary consequence.

PROBLEM 1-36 : A particle is attached to one end of an unstretched Hooke'slaw spring with force constant k. The other end of the spring is fixed in place. If now the particle is pulled so the spring is stretched by a distance x, the potential energy of the particle is $U=(1 / 2) k x^{2}$. (a) Now suppose there are two unstretched springs with the same force constant k that are laid end-to-end in the y direction, with a particle attached between them. The other ends of the springs are fixed in place. Now the particle is pulled in the transverse direction a distance x. Find its potential energy $U(x)$. (b) $U(x)$ is proportional to what power of x for small x, and to what power of x for large x ?

PROBLEM 1-37 : A particle of mass m is subject to the central attractive force $\mathbf{F}=-k \mathbf{r}$, a force that in effect is that of a Hooke's-law spring of zero unstretched length, whose other end is fixed to the origin. The particle is placed at an initial position \mathbf{r}_{0} and then given an initial velocity \mathbf{v}_{0} that is not colinear with \mathbf{r}_{0}. (a) Explain why the subsequent motion of the particle is confined to a plane that contains the two vectors \mathbf{r}_{0} and \mathbf{v}_{0}. (b) Find the potential energy of the particle. (c) Explain why the particle's angular momentum is conserved about the origin, and use this fact to find a first-order differential equation of motion involving r and $d r / d t$. (d) Solve the equation for $t(r)$, and show that the particle has both an inner and an outer turning point.

PROBLEM 1-38: A rock of mass m is thrown radially outward from the surface of a spherical, airless moon. From Newton's second law its acceleration is $\ddot{r}=-G M / r^{2}$, where M is the moon's mass and r is the distance from the moon's center to the rock (the minus sign indicates that the acceleration is inward, toward the moon's surface). The energy of the rock is conserved, so (1/2)m $\dot{r}^{2}-$
$G M m / r=E=$ constant. (a) Show by differentiating this latter equation that energy conservation is a first integral of $F=m \ddot{r}$ in this case. (b) What is the minimum value of E (in terms of given parameters), for which the rock will escape from the moon? (c) For this case of the escape energy $E_{\text {esc }}$, what is $\dot{r}(t)$, the velocity of the rock as a function of the time since it was thrown? Also find $\dot{r}(t)$ if (d) $E>E_{\text {esc }}$ (e) $E<E_{\text {esc }}$.

PROBLEM 1-39 : The Friedman equations have played an important role in big-bang cosmology. They feature an "expansion factor" $a(t)$, proportional to the distance between any two points (such as the positions of two galaxies) that are sufficiently remote from one another that local random motions can be ignored. If a increases with time, the distance between galaxies increases proportionally, corresponding to an expanding universe. If we model for simplicity the universe as filled with pressure-free dust of uniform density ρ, the Friedman equations for $a(t)$ are

$$
\begin{equation*}
\ddot{a}=-\frac{4 \pi G \rho}{3} a \quad \text { and } \quad \dot{a}^{2}=\frac{8 \pi G \rho}{3} a^{2}-\frac{k c^{2}}{R_{0}^{2}} \tag{1.88}
\end{equation*}
$$

where G is Newton's gravitational constant, c is the speed of light, R_{0} is the distance between two dust particles at some particular time t_{0}, and $k=+1,-1$, or 0 . The density of the dust is inversely proportional to the cube of the scale factor $a(t)$, i.e., $\rho=\rho_{0}\left(a_{0} / a\right)^{3}$, where ρ_{0} is the density when $a=a_{0}$. Therefore

$$
\begin{equation*}
\ddot{a}=-\frac{4 \pi G \rho_{0} a_{0}^{3}}{3 a^{2}} \quad \text { and } \quad \dot{a}^{2}=\frac{8 \pi G \rho_{0} a_{0}^{3}}{3 a}-\frac{k c^{2}}{R_{0}^{2}} . \tag{1.89}
\end{equation*}
$$

(a) Show that if we set the origin to be at one of the two chosen dust particles, then if M is the total mass of dust within a sphere surrounding this origin out to the radius of the other chosen particle, then the equations can be written

$$
\begin{equation*}
\ddot{a}=-\frac{\left(G M / R_{0}^{3}\right)}{a^{2}} \quad \text { and } \quad \frac{1}{2} \dot{a}^{2}-\frac{\left(G M / R_{0}^{3}\right)}{a}=-\frac{k c^{2}}{2 R_{0}^{2}} \equiv \epsilon \tag{1.90}
\end{equation*}
$$

where ϵ and M are constants. (b) Show that the second equation is a first integral of the first equation. (c) Compare these equations to the $F=m a$ and energy conservation equations of a particle moving radially under the influence of the gravity of a spherical moon of mass M. (d) Einstein hoped that his generalrelativistic equations would lead to a static solution for the universe, since he (like just about everyone before him) believed that the universe was basically at rest. The Friedman equations resulting from his theory show that the universe is generally expanding or contracting, however, just as a rock far from the Earth is
not going to stay there, but will generally be either falling inward or on its way out. So Einstein modified his theory with the addition of a "cosmological constant" Λ, which changed the Friedman equations for pressure-free dust to

$$
\begin{equation*}
\ddot{a}=-\frac{\left(G M / R_{0}^{3}\right)}{a^{2}}+\frac{\Lambda}{3} a \quad \text { and } \quad \frac{1}{2} \dot{a}^{2}-\frac{\left(G M / R_{0}^{3}\right)}{a}-\frac{\Lambda}{6} a^{2}=\epsilon . \tag{1.91}
\end{equation*}
$$

Show that these equations do have a static solution, and find the value of Λ for which the solution is static. (e) Show however (by sketching the effective potential energy function in the second equation) that the static solution is unstable, so that if the universe is kicked even slightly outward it will accelerate outward, or if it is kicked even slightly inward it will collapse. A static solution is therefore physically unrealistic. (Einstein failed to realize that his static solution was unstable, and later, when Edwin Hubble showed from his observations at the Mount Wilson Observatory that the universe is in fact expanding, Einstein declared that introducing the cosmological constant was "my biggest blunder".) (f) Suppose the cosmological constant is retained in the equations, but that the dust is removed so that $M=0$. Solve the equations for $a(t)$ in this case. The solution is the de Sitter model, an "inflationary" model of the expanding universe. What is the constant ϵ for the de Sitter model? (g) Make a qualitative sketch of $a(t)$ if both M and Λ are nonzero. Of the terms containing M and Λ, which dominates for small times? For large times?

[^0]: ${ }^{1}$ Remember that the equation of an ellipse in the $x-y$ plane can be written as

 $$
 \begin{equation*}
 \frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1 \tag{1.38}
 \end{equation*}
 $$

 where $\left(x_{0}, y_{0}\right)$ is the center of the ellipse, and a and b are the minor and major radii. One can show that equation (1.37) indeed satisfies this equation for appropriate relations between $\varphi_{1}, \varphi_{2}, A_{1}, A_{2}$ and x_{0}, y_{0}, a, b.

[^1]: ${ }^{2}$ The Nobel prize for the development of the renormalization group was awarded to Kenneth G. Wilson in 1982. Wilson described most concisely and elegantly the idea that physics at large length scales is sensitive to physics at small length scales only through a finite number of parameters. However, the idea pervades other major benchmarks of theoretical physics, such as the Nobel prizes of 1999 to Gerardus 't Hooft and Martinus J. G. Veltman and of 1965 to Sin-Itiro Tomonaga, Julian S. Schwinger, and Richard P. Feynman.

[^2]: ${ }^{3}$ The viscosity η of a fluid can be measured in principle by placing the fluid between two parallel metal plates of area A that are separated by a distance d. When one plate is kept fixed while the other is moved parallel to the fixed plate with constant velocity v, the drag force on the moving plate is observed to have the magnitude $F=\eta A v / d$. From this formula one can see that the dimensions of η are $M / L T$.
 ${ }^{4}$ In this problem we are assuming smooth, so-called laminar flow, which is nonturbulent. High-viscosity fluids (like molasses) that move slowly in narrow pipes are less likely to become turbulent. Turbulent flow is more complicated and depends on additional parameters.

