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Chapter 1

Newtonian particle mechanics

In this chapter we review the laws of Newtonian mechanics. We set the
stage with inertial frames and the Galilean transformation, move on to New-
ton’s celebrated three laws of motion, present a catalogue of forces that are
commonly encountered in mechanics, and end with a review of dimensional
analysis. All this is a preview to a relativistic treatment of mechanics in the
next chapter.

1.1 Inertial frames and the Galilean transfor-
mation

Classical mechanics begins by analyzing the motion of particles. Classical
particles are idealizations: they are pointlike, with no internal degrees of
freedom like vibrations or rotations. But by understanding the motion of
these ideal “particles” we can also understand a lot about the motion of
real objects, because we can often ignore what is going on inside of them.
The concept of “classical particle” can in the right circumstances be used for
objects all the way from electrons to baseballs to stars to entire galaxies.

In describing the motion of a particle we first have to choose a frame
of reference in which an observer can make measurements. Many reference
frames could be used, but there is a special set of frames, the nonaccelerating,
inertial frames, which are particularly simple. Picture a set of three or-
thogonal meter sticks defining a set of Cartesian coordinates drifting through
space with no forces applied. The set of meter sticks neither accelerates nor
rotates relative to visible distant stars. An inertial observer drifts with the

1
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Figure 1.1: Various inertial frames in space. If one of these frames is inertial,
any other frame moving at constant velocity relative to it is also inertial.

coordinate system and uses it to make measurements of physical phenomena.
This inertial frame and inertial observer are not unique, however: having es-
tablished one inertial frame, any other frame moving at constant velocity
relative to it is also inertial, as illustrated in Figure 1.1.

Two of these inertial observers, along with their personal coordinate sys-
tems, are depicted in Figure 1.2: observer O describes positions of objects
through a Cartesian system labeled by (x, y, z), while observer O0 uses a
system labeled by (x0, y0, z0).

An event of interest to an observer is characterized by the position in
space at which the measurement is made — but also by the instant in time
at which the observation occurs, according to clocks at rest in the observer’s
inertial frame. For example, an event could be a snapshot in time of the
position of a particle along its trajectory. Hence, the event is assigned four
numbers by observer O: x, y, z, and t for time, while observer O0 labels the
same event x0, y0, z0, and t0.

Without loss of generality, observer O can choose her x axis along the
direction of motion of O0, and then the x0 axis of O0 can be aligned with that
axis as well, as shown in Figure 1.2. it seems intuitively obvious that the two
coordinate systems are then related by

x = x0 + V t0 , y = y0 , z = z0 t = t0 (1.1)
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Figure 1.2: Two inertial frames, O and O0, moving relative to one another
along their mutual x axes.

where we assume that the origins of the two frames coincide at time t0 =
t = 0. This is known as a Galilean transformation. Note that the only
di↵erence in the coordinates is in the x direction, corresponding to the dis-
tance between the two origins as each system moves relative to the other.
This transformation — in spite of being highly intuitive — will turn out to
be incorrect, as we shall see in the next chapter. But for now, we take it as
good enough for our Newtonian purposes.

If the coordinates represent the instantaneous position of a particle, we
can write

x(t) = x0(t0) + V t0 , y(t) = y0(t0) , z(t) = z0(t0) t = t0 . (1.2)

We then di↵erentiate this transformation with respect to t = t0 to obtain the
transformation laws of velocity and acceleration. Di↵erentiating once gives

vx = v0
x + V , vy = v0

y
, vz = v0

z
, (1.3)

where for example vx ⌘ dx/dt and v0x ⌘ dx0/dt0, and di↵erentiating a second
time gives

ax = a0
x

, ay = a0
y

, az = a0
z
. (1.4)

That is, the velocity components of a particle di↵er by the relative frame
velocity in each direction, while the acceleration components are the same in
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every inertial frame. Therefore one says that the acceleration of a particle is
Galilean invariant.

We take as a postulate that the fundamental laws of classical mechanics
are also Galilean invariant. This mathematical statement is equivalent to the
physical statement that an observer at rest in any inertial frame is qualified
to use the fundamental laws – there is no preferred inertial frame of reference.
This equivalence of inertial frames is called the principle of relativity.

We are now equipped to summarize the fundamental laws of Newtonian
mechanics, and discuss their invariance under the Galilean transformation.

1.2 Newton’s laws of motion

In his Principia of 1687, Isaac Newton (1642-1727) presented his famous
three laws. The first of these is the law of inertia:

I: If there are no forces on an object, then if the object starts
at rest it will stay at rest, or if it is initially set in motion, it will
continue moving in the same direction in a straight line at constant
speed.

We can use this definition to test whether or not our frame is inertial. If we
are inertial observers and we remove all interactions from a particle under
observation, if set at rest the particle will stay put, and if tossed in any
direction it will keep moving in that direction with constant speed. The
law of inertia is obeyed, so by definition our frame is inertial. Note from the
Galilean velocity transformation that if a particle has constant velocity in one
inertial frame it has constant velocity in all inertial frames. Hence, Galilean
transformations correctly connect the perspectives of inertial reference frames.

An astronaut set adrift from her spacecraft in outer space, far from Earth,
or the Sun, or any other gravitating object, will move o↵ in a straight line
at constant speed when viewed from an inertial frame. So if her spaceship
is drifting without power and is not rotating, the spaceship frame is inertial,
and onboard observers will see her move away in a straight line. But if her
spaceship is rotating, for example, observers on the ship will see her move o↵
in a curved path — the frame inside a rotating spaceship is not inertial.
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Now consider an inertial observer who observes a particle to which a force
F is applied. Then Newton’s second law states that

F =
dp

dt
(1.5)

where the momentum of the particle is p = mv, the product of its
mass and velocity. That is,

II: The time rate of change of a particle’s momentum is equal to
the net force on that particle.

Newton’s second law tells us that if the momentum of a particle changes,
there must be a net force causing that change. Note that the second law gives
us the means to identify and quantify the e↵ect of forces and interactions.
By conducting a series of measurements of the rate of change of momenta
of a selection of particles, we explore the forces acting on them in their
environment. Once we understand the nature of these forces, we can use
this knowledge to predict the motion of other particles in a wider range of
circumstances — this time by deducing the e↵ect of such forces on rate of
change of momentum.

Note that the derivative dp/dt = mdv/dt = ma, so Newton’s second
law can also be written in the form F = ma, where a is the acceleration of
the particle. The law therefore implies that if we remove all forces from an
object, neither its momentum nor its velocity will change: it will remain at
rest if started at rest, and move in a straight line at constant speed if given
an initial velocity. But that is just Newton’s first law, so it might seem that
the first law is just a special case of the second law! However, the second
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law is not true in all frames of reference. An accelerating observer will see
the momentum of an object changing, even if there is no net force on it. In
fact, it is only inertial observers who can use Newton’s second law, so the
first law is not so much a special case of the second as a means of specifying
those observers for whom the second law is valid.

Newton’s second law is the most famous fundamental law of classical
mechanics, and it must also be Galilean invariant according to our principle
of relativity. We have already shown that the acceleration of a particle is
invariant and we also take the mass of a particle to be the same in all inertial
frames. So if F = ma is to be a fundamental law, which can be used by
observers at rest in any inertial frame, we must insist that the force on a
particle is likewise a Galilean invariant. Newton’s second law itself does not
specify which forces exist, but in classical mechanics any force on a particle
(due to a spring, gravity, friction, or whatever) must be the same in all
inertial frames.

If the drifting astronaut is carrying a wrench, by throwing it away (say) in the
forward direction she exerts a force on it. During the throw the momentum
of the wrench changes, and after it is released, it travels in some straight line
at constant speed.

Finally, Newton’s third law states that

III: “Action equals reaction”. If one particle exerts a force on
a second particle, the second particle exerts an equal but opposite
force back on the first particle.

We have already stated that any force acting on a particle in classical me-
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chanics must be the same in all inertial frames, so it follows that Newton’s
third law is also Galilean invariant: a pair of equal and opposite forces in a
given inertial frame transform to the same equal and opposite pair in another
inertial frame.

While the astronaut, drifting away from her spaceship, is exerting a force
on the wrench, at each instant the wrench is exerting an equal but opposite
force back on the astronaut. This causes the astronaut’s momentum to change
as well, and if the change is large enough her momentum will be reversed,
allowing her to drift back to her spacecraft in a straight line at constant speed
when viewed in an inertial frame.

EXAMPLE 1-1: A bacterium with a viscous retarding force

The most important force on a nonswimming bacterium in a fluid is
the viscous drag force F = �bv, where v is the velocity of the bacterium
relative to the fluid and b is a constant that depends on the size and shape
of the bacterium and the viscosity of the fluid — the minus sign means that
the drag force is opposite to the direction of motion. If the bacterium, as
illustrated in Figure 1.3, gains a velocity v

0

and then stops swimming, what
is its subsequent velocity as a function of time?

Let us assume that the fluid defines an inertial reference frame. Newton’s
second law then leads to the ordinary di↵erential equation

m
dv

dt
= �b v ) m ẍ = �b ẋ (1.6)



8 CHAPTER 1. NEWTONIAN PARTICLE MECHANICS

Figure 1.3: A bacterium in a fluid. What is its motion if it begins with
velocity v

0

and then stops swimming?

where ẋ ⌘ dx/dt and ẍ ⌘ d2x/dt2. As is always the case with Newton’s
second law, this is a second-order di↵erential equation in position. However,
it is a particularly simple one that can be integrated at once. Separating
variables and integrating,Z v

v
0

dv

v
= � b

m

Z t

0

dt, (1.7)

which gives ln(v)� ln(v
0

) = ln(v/v
0

) = �(b/m)t. Exponentiating both sides,

v = v
0

e�(b/m)t ⌘ v
0

e�t/⌧ (1.8)

where ⌧ ⌘ m/b is called the “time constant” of the exponential decay. In
a single time constant, i.e., when t = ⌧ , the velocity decreases to 1/e of its
initial value; therefore ⌧ is a measure of how quickly the bacterium slows
down. The bigger the drag force (or the smaller the mass) the greater the
deceleration.

An alternate way to solve the di↵erential equation is to note that it is
linear with constant coe�cients, so the exponential form v(t) = Ae↵t is bound
to work, for an arbitrary constant A and a particular constant ↵. In fact, the
constant ↵ = �1/⌧ , found by substituting v(t) = Ae↵t into the di↵erential
equation and requiring that it be a solution. In this first-order di↵erential
equation, the constant A is the single required arbitrary constant. It can be
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determined by imposing the initial condition v = v
0

at t = 0, which tells us
that A = v

0

.
Now we can integrate once again to find the bacterium’s position x(t). If

we choose the x direction to be in the v
0

direction, then v = dx/dt, so

x(t) = v
0

Z t

0

e�t/⌧ dt = v
0

⌧
�
1� e�t/⌧

�
. (1.9)

The bacterium’s starting position is x(0) = 0, and as t ! 1, its position x
asymptotically approaches the value v

0

⌧ . Note that given a starting position
and an initial velocity, the path of a bacterium is determined by the drag
force exerted on it and the condition that it stop swimming.

EXAMPLE 1-2: A linearly damped oscillator

We seek to find the motion of a mass m confined to move in the x direction
at one end of a Hooke’s-law spring of force-constant k, and which is also
subject to the damping force �b v where b is a constant. That is, we assume
that the damping force is linearly proportional to the velocity of the mass and
in the direction opposite to its motion. This is seldom true for macroscopic
objects: damping is usually a steeper function of velocity than this. However,
linear (i.e., viscous) damping illustrates the general features of damping while
permitting us to find exact analytic solutions.

Newton’s second law gives

F = �kx� bẋ = mẍ, (1.10)

a second-order linear di↵erential equation equivalent to

ẍ + 2�ẋ + !2

0

x = 0, (1.11)

where we write � ⌘ b/2m and !
0

⌘ pk/m to simplify the notation. We
see here a scenario that is typical in a problem using Newton’s second law:
we generate a second-order di↵erential equation. Mathematically, we are
guaranteed a solution once we fix two initial conditions. This can be, for
example, the initial position x(0) = x

0

and the initial velocity v(t) = ẋ(t) =
v

0

. Hence, our solution will depend on two constants to be specified by the
particular problem. In general, each dynamical variable we track through
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Newton’s second law will generate a single second-order di↵erential equation,
and hence will require two initial conditions. This is the sense in which
Newton’s laws provide us with predictive power: fix a few constants using
initial conditions, and physics will tell us the future evolution of the system.
For the example at hand, equation (1.11) is a linear di↵erential equation
with constant coe�cients, which can be solved by setting x / e↵t for some
↵. Substituting this form into equation (1.11) gives the quadratic equation

↵2 + 2�↵ + !2

0

= 0 (1.12)

with solutions

↵ = �� ±
q

�2 � !2

0

. (1.13)

There are now three possibilities: (1) � > !
0

, the “overdamped” solution;
(2) � < !

0

, the “underdamped” solution; and (3) � = !
0

, the “critically
damped” solution.

(1) In the overdamped case the exponent ↵ is real and negative, and so
the position of the mass as a function of time is

x(t) = A
1

e��
1

t + A
2

e��
2

t (1.14)

where �
1

= �� +
p

�2 � !2

0

and �
2

= ���
p

�2 � !2

0

. Here A
1

and A
2

are
arbitrary constants. The two terms are the expected linearly independent
solutions of the second-order di↵erential equation, and the coe�cients A

1

and A
2

can be determined from the initial position x
0

and initial velocity v
0

of the mass. Figure 1.4(a) shows a plot of x(t).
(2) In the underdamped case, the quantity

p
�2 � !2

0

= i
p

!2

0

� �2 is
purely imaginary, so

x(t) = e��t(A
1

ei!
1

t + A
2

e�i!
1

t) (1.15)

where !
1

=
p

!2

0

� �2. We can use Euler’s identity

ei✓ = cos ✓ + i sin ✓ (1.16)

to write x in terms of purely real functions,

x(t) = e��t(Ā
1

cos !
1

t + Ā
2

sin !
1

t) (1.17)
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Figure 1.4: Motion of an oscillator if it is (a) overdamped, (b) underdamped,
or (c) critically damped, for the special case where the oscillator is released
from rest (v

0

= 0) at some position x
0

.

where Ā
1

= A
1

+ A
2

and Ā
2

= i(A
1

� A
2

) are real coe�cients. We can also
use the identity cos(✓ + ') = cos ✓ cos '� sin ✓ sin ' to write equation (1.17)
in the form

x(t) = A e��t cos(!
1

t + ') (1.18)

where A =
p

Ā2

1

+ Ā2

2

and ' = tan�1(�Ā
2

/Ā
1

). That is, the underdamped
solution corresponds to a decaying oscillation with amplitude A e��t. The
arbitrary constants A and ' can be determined from the initial position x

0

and velocity v
0

of the mass. Figure 1.4(b) shows a plot of x(t). If there
is no damping at all, we have b = � = 0 (and the oscillator is obviously
“underdamped”). The original equation (1.11) becomes the simple harmonic
oscillator equation

ẍ + !2

0

x = 0 (1.19)

whose most general solution is

x(t) = A cos(!
0

t + '). (1.20)
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This gives away the meaning of !
0

: it is the angular frequency of oscillation
of a simple harmonic oscillator, related to the oscillation frequency ⌫ in cy-
cles/second by !

0

= 2⇡⌫. Note that !
1

< !
0

; i.e. the damping slows down
the oscillations in addition to damping the amplitude.

(3) In the critically damped case � = !
0

the two solutions of equa-
tion (1.12) merge into the single solution x(t) = A e��t. A second-order
di↵erential equation has two linearly independent solutions, however, so we
need one more. This additional solution is x = A0t e��t for an arbitrary coef-
ficient A0, as can be seen by substituting this form into equation (1.11). The
general solution for the critically damped case is therefore

x = (A + A0t)e��t (1.21)

which has the two independent constants A and A0 needed to provide a
solution determined by the initial position x

0

and velocity v
0

. Figure 1.4(c)
shows a plot of x(t) in this case.

Whichever solution applies, it is clear that the motion of the particle is
determined by (a) the initial position x(0) and velocity ẋ(0), and (b) the
force acting on it throughout its motion.

1.3 Systems of particles

So far we have concentrated on single particles. We will now expand our
horizons to encompass systems of an arbitrary number of particles. A system
of particles might be an entire solid object like a bowling ball, in which tiny
parts of the ball can be viewed as individual infinitesimal particles. Or we
might have a liquid in a glass, or the air in a room, or a planetary system,
or a galaxy of stars, all made of constituents we treat as ‘particles’.

The location of the ith particle of a system can be identified by a position
vector ri extending from the origin of coordinates to that particle, as illus-
trated in Figure 1.5. Using the laws of classical mechanics for each particle in
the system, we can find the laws that govern the system as a whole. Define
the total momentum P of the system to be the sum of the momenta of the
individual particles,

P =
X

i

pi. (1.22)
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Figure 1.5: A system of particles, with each particle identified by a position
vector r

Similarly, define the total force FT on the system to be the sum of all the
forces on all the particles,

FT =
X

i

Fi. (1.23)

It then follows that FT = dP/dt, just by adding up the individual Fi =
dpi/dt equations for all the particles. If we further split up the total force FT

into F
ext

(the sum of the forces exerted by external agents, like Earth’s gravity
or air resistance on the system of particles that form a golfball) and F

int

(the
sum of the internal forces between members of the system themselves, like
the mutual forces between particles within the golfball), then

FT = F
int

+ F
ext

= F
ext

, (1.24)

because all the internal forces cancel out by Newton’s third law. That is,
for any two particles i and j, the force of i on j is equal but opposite to the
force of j on i. Finally, we can write a grand second law for the system as a
whole,

F
ext

=
dP

dt
(1.25)

showing how the system as a whole moves in response to external forces.
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Figure 1.6: A collection of particles, each with a position vector ri from a
fixed origin. The center of mass RCM is shown, and also the position vector
r0i of the ith particle measured from the center of mass.

Now the importance of momentum is clear. For if no external forces act
on the collection of particles, their total momentum cannot depend upon
time, so P is conserved. Individual particles in the collection may move in
complicated ways, but they always move in such a way as to keep the total
momentum constant.

A useful quantity characterizing a system of particles is their center of
mass position RCM . Let the ith particle have mass mi, and define the center
of mass of the collection of particles to be

RCM =

P
i miri

M
, (1.26)

where M =
P

i mi is the total mass of the system. We can write the position
vector of a particle as the sum ri = RCM + r0i, where r0i is the position vector
of the particle measured from the center of mass, as illustrated in Figure 1.6.

The velocity of the center of mass is

VCM =
dRCM

dt
=

P
i mivi

M
=

P

M
(1.27)

di↵erentiating term by term, and using the fact that the particle masses are
constant. Again P is the total momentum of the particles, so we have proven



1.4. CONSERVATION LAWS 15

that the center of mass moves at constant velocity whenever P is conserved–
that is, whenever there is no net external force. In particular, if there is no
external force on the particles, their center of mass stays at rest if it starts
at rest.

This result is also very important because it shows that a real object com-
posed of many smaller “particles” can be considered a particle itself: it obeys
all of Newton’s laws with a position vector given by RCM , a momentum given
by P, and the only relevant forces being the external ones. It relieves us of
having to draw a distinct line between particles and systems of particles. For
some purposes we think of a star as composed of many smaller particles,
and for other purposes the star as a whole could be considered to be a single
particle in the system of stars called a galaxy.

1.4 Conservation laws

Using Newton’s laws we can show that under the right circumstances, there
are as many as three dynamical properties of a particle that remain con-
stant in time, i.e. that are conserved. These properties are momentum,
angular momentum, and energy. They are conserved under di↵erent cir-
cumstances, so in any particular case all of them, none of them, or only one
or two of them may apply. As we will see, a conservation law typically leads
to a first-order di↵erential equation, which is generally much easier to tackle
that the usual second-order equations we get from Newton’s second law. This
makes identifying conservation laws in a system a powerful tool for problem
solving and characterizing the motion. We will later also learn in Chapter 5
that there are deep connections between conservation laws and symmetries
in Nature.

MOMENTUM

From Newton’s second law it follows that if there is no net force on a particle,
its momentum p = mv is conserved, so its velocity v is also constant. Con-
servation of momentum for a single particle simply means that a free particle
(a particle with no force on it) moves in a straight line at constant speed.
For a single particle, conservation of momentum is equivalent to Newton’s
first law.

For a system of particles, however, momentum conservation becomes non-
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trivial, because it requires only the conservation of total momentum P. When
there are no external forces acting on a system of particles, the total mo-
mentum of the individual constituents remains constant, even though the
momentum of each single particle may change:

P =
X

i

pi = constant. (1.28)

As we saw earlier, this is the momentum of the center of mass of the system
if we were to imagine the sum of all the constituent masses added up and
placed at the center of mass. This relation can be very handy when dealing
with several particles.

EXAMPLE 1-3: A wrench in space

We are sitting within a spaceship watching a colleague astronaut outside
holding a wrench. The astronaut-plus-wrench system is initially at rest from
our point of view. The angry astronaut (of mass M) suddenly throws the
wrench (of mass m), with some unknown force. We then see the astronaut
moving with velocity V. Without knowing anything about the force with
which she threw the wrench, we can compute the velocity of the wrench. No
external forces act on the system consisting of wrench plus astronaut, so its
total momentum is conserved:

P = M V + mv = constant, (1.29)

where v is the unknown velocity of the wrench. Since the system was initially
at rest, we know that P = 0 for all time. We then deduce

v = �M V

m
(1.30)

without needing to even stare at Newton’s second law or any other second-
order di↵erential equation.

ANGULAR MOMENTUM

Let a position vector r extend from an origin of coordinates to a particle, as
shown in Figure 1.7. The angular momentum of the particle is defined to be

` = r⇥ p, (1.31)
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Figure 1.7: The position vector for a particle. Angular momentum is al-
ways defined with respect to a chosen point from where the position vector
originates.

the vector cross product of r with the particle’s momentum p. Note that
in a given inertial frame the angular momentum of the particle depends not
only on properties of the particle itself, namely its mass and velocity, but also
upon our choice of origin. Using the product rule, the time derivative of `
is

d`

dt
=

dr

dt
⇥ p + r⇥ dp

dt
. (1.32)

The first term on the right is v ⇥ mv, which vanishes because the cross
product of two parallel vectors is zero. In the second term, we have dp/dt = F
using Newton’s second law, where F is the net force acting on the particle.
It is therefore convenient to define the torque N on the particle due to F as

N = r⇥ F, (1.33)

so that

N =
d`

dt
. (1.34)

That is, the net torque on a particle is responsible for any change in its
angular momentum, just as the net force on the particle is responsible for any
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change in its momentum. The angular momentum of a particle is conserved
if there is no net torque on it.

Sometimes the momentum p is called the “linear momentum” to distin-
guish it from the angular momentum `. However, linear momentum and
angular momentum are not two aspects of the same thing. They have di↵er-
ent units and are conserved under di↵erent circumstances. The momentum
of a particle is conserved if there is no net external force and the angular
momentum of the particle is conserved if there is no net external torque. It
is easy to arrange forces on an object so that it experiences a net force but
no net torque, and equally easy to arrange them so there is a net torque but
no net force. For example, if the force F is parallel to r, we have N = 0; yet
there is a non-zero force.

There is another striking di↵erence between momentum and angular mo-
mentum: in a given inertial frame, the value of a particle’s momentum p
is independent of where we choose to place the origin of coordinates. But
because the angular momentum ` of the particle involves the position vector
r, the value of ` does depend on the choice of origin. This makes angular
momentum somewhat more abstract than momentum, in that in the exact
same problem di↵erent people at rest in the same inertial frame may assign
it di↵erent values depending on where they choose to place the origin of their
coordinate system.

EXAMPLE 1-4: A particle moving in two dimensions with an at-
tractive spring force

A block of mass m is free to move on a frictionless tabletop under the
influence of an attractive Hooke’s-law spring force F = �kr, where the vector
r is the position vector of the particle measured from the origin. We will find
the motion x(t), y(t) of the ball and show that the angular momentum of the
ball about the origin is conserved.

The vector r = x x̂+ y ŷ, where x and y are the Cartesian coordinates of the
ball and x̂ and ŷ are unit vectors pointing in the positive x and positive y
directions, respectively. Newton’s second law �kr = mr̈ becomes

�k(xx̂ + yŷ) = m(ẍx̂ + ÿŷ), (1.35)

which separates into the two simple harmonic oscillator equations

ẍ + !2

0

x = 0 and ÿ + !2

0

y = 0 (1.36)
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where !
0

=
p

k/m. It is interesting that the x and y motions are com-
pletely independent of one another in this case; the two coordinates have
been decoupled, so we can solve the equations separately. The solutions are

x = A
1

cos(!
0

t + '
1

) and y = A
2

cos(!
0

t + '
2

), (1.37)

showing that the ball oscillates simple harmonically in both directions. The
four constants A

1

, A
2

, '
1

, '
2

can be evaluated in terms of the four initial
conditions x

0

, y
0

, vx0, vy0. The oscillation frequencies are the same in each
direction, so orbits of the ball are all closed. In fact, the orbit shapes are
ellipses centered at the origin, as shown in Figure 1.81. Note that in this
two-dimensional problem, the motion of the ball is determined by four initial
conditions (the two components of the position vector and the two compo-
nents of the velocity vector) together with the known force throughout the
motion. This is what is expected for two second-order di↵erential equations.

The spring exerts a torque on the ball about the origin, which is N =
r⇥F = r⇥�kr = 0, since the cross product of any vector with itself vanishes.
Therefore the angular momentum of the ball is conserved about the origin.
In this case, this angular momentum is given by

` = (x x̂ + y ŷ)⇥ (m ẋ x̂ + m ẏ ŷ) = (m x ẏ �m y ẋ)ẑ , (1.39)

so the special combination m x ẏ�m y ẋ remains constant for all time. That
is certainly a highly non-trivial statement.

The angular momentum is not conserved about any other point in the
plane, because then the position vector and the force vector would be neither
parallel nor antiparallel. The angular momentum of a particle is always
conserved if the force is purely central, i.e. if it is always directly toward or
away from a fixed point, as long as that same point is chosen as origin of the
coordinate system.

1Remember that the equation of an ellipse in the x� y plane can be written as

(x� x0)2

a2
+

(y � y0)2

b2
= 1 (1.38)

where (x0, y0) is the center of the ellipse, and a and b are the minor and major radii.
One can show that equation (1.37) indeed satisfies this equation for appropriate relations
between '1, '2, A1, A2 and x0, y0, a, b.
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Figure 1.8: A two-dimensional elliptical orbit of a ball subject to a Hooke’s
law spring force, with one end of the spring fixed at the origin.

We still have not used the conservation of angular momentum in this
problem to our advantage, because we solved the full second-order di↵erential
equation. To see how we can tackle this problem without ever needing to stare
at Newton’s second law or any second-order di↵erential equation, we need to
first look at another very useful conservation law, energy conservation.

ENERGY

The energy of a particle is a third quantity that is sometimes conserved.
Let F be one of the forces acting on a particle. Define the work done by F
on the particle to be the line integral

Wab =

Z b

a

F · ds (1.40)

as the particle moves between two points a and b by whatever path it happens
to take. Here ds is a vector that points in the direction of the path at some
point and whose magnitude ds is an infinitesimal distance along the path
at that point. The dot product F · ds = Fds cos ✓, where ✓ is the angle
between the vectors F and ds, which shows that it is only the component
of F parallel to the path at some point that does work on the particle.
Figure 1.9 illustrates the setup.
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If we were to integrate Newton’s second law along the path of a particle
acted upon by a single force, we would write

Wab =

Z b

a

F · ds =

Z b

a

ma · ds . (1.41)

The right-hand side may be simplified furtherZ b

a

ma · ds =

Z b

a

m
dv

dt
· ds =

Z b

a

mdv · ds

dt
=

Z b

a

mdv · v . (1.42)

In the last step, we moved the dt to ds to change the measure of the integral
to dv. We can now easily integrate the right-hand sideZ b

a

mdv · dv =
1

2
mv2

b �
1

2
mv2

a , (1.43)

as can be easily verified by expanding the dot product dv · v = dvxvx +
dvyvy + dvzvz. Defining Kinetic Energy as

T ⌘ 1

2
mv2 , (1.44)

we now have an “integral form” of Newton’s second law

Wab = Tb � Ta . (1.45)

That is, the work done by the force is the di↵erence between the final and
initial kinetic energies of the particle.

Often the work done by a particular force F depends upon which path
the particle takes as it moves from a to b. The frictional work done by air
resistance on a ball as it flies from the bat to an outfielder depends upon how
high it goes, that is, whether its total path length is short or long. There are
other forces, however, like the static force of gravity, for which the work done
is independent of the particle’s path: For example, the work done by Earth’s
gravity on the ball is the same no matter how it gets to the outfielder. For
such forces the work depends only upon the endpoints a and b. That implies
that the work can be written as the di↵erence

Wab = �U(b) + U(a) (1.46)

between a “potential energy” function U evaluated at the final point b and
the initial point a. Similarly, the work done by this force as the particle
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Figure 1.9: The work done by a force on a particle is its line integral along
the path traced by the particle.

moves from b to a third point c is Wbc = �U(c) + U(b), so the work done as
the particle moves all the way from a to c is

Wac = Wab +Wbc = �U(b)+U(a)�U(c)+U(b) = �U(c)+U(a)(1.47)

as expected, independent of the intermediate point b.

Forces F for which the work Wab =
R b

a
F · ds between any two points a

and b is independent of the path, are said to be conservative. There are
several tests for conservative forces that are mathematically equivalent, in
that if any one of them is true the others are true as well. The conditions
are

(1) Wab =
R b

a
F · ds is path independent.

(2) The integral around any closed path
H

F · ds = 0.

(3) The curl of the force function vanishes: r⇥ F = 0.

(4) The force function can always be written as the negative gradient of some
scalar function U : F = �rU .

Often the third of these conditions makes the easiest test. For example, the
curl of the uniform gravitational force F = �mg ẑ is, using the determinant
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expression for the curl,

r⇥ F =

������
x̂ ŷ ẑ

@/@x @/@y @/@z
F x F y F z

������ = 0, (1.48)

since each component of F is zero or a constant. Therefore this force is
conservative. On the other hand, the curl of the hypothetical force F = ↵xyẑ,
where ↵ is a constant, is

r⇥ F =

������
x̂ ŷ ẑ

@/@x @/@y @/@z
0 0 ↵xy

������
= x̂

@

@y
(↵ x y)� ŷ

@

@x
(↵ x y) = ↵(x x̂� y ŷ) 6= 0, (1.49)

so this force is not conservative, and does not possess a potential energy
function.

The work done is equal to the di↵erence between two potential energies,
so it follows that the physics is exactly the same for a particle with potential
energy U(r) as it is for a potential energy U(r)+C, where C is any constant.
For example, the potential energy of a particle of mass m in a uniform grav-
itational field g is U

grav

= mgh, where h is the altitude of the particle. The
fact that any constant can be added to U in this case is equivalent to the fact
that it doesn’t matter from what point the altitude is measured; the motion
of a particle is the same whether we measure altitude from the ground or
from the top of a building.

Putting all this together, for a system involving conservative forces, we
can now write

Wab = �U(b)� U(a) = Tb � Ta . (1.50)

Introducing a new quantity we call energy, we then write

E ⌘ T + U ) Eb = Ea , (1.51)

that is energy as the sum of kinetic and potential energies is conserved in
systems involving only conservative forces. Otherwise, we could write a more
general statement

W noncons

ab = Eb � Ea ; (1.52)



24 CHAPTER 1. NEWTONIAN PARTICLE MECHANICS

i.e. the work done by non-conservative forces measures the non-conservation
of energy in the system. It has turned out to be very useful to expand the
concept of energy beyond kinetic and potential energies, so in the case of
nonconservative forces like friction, a decrease in the “mechanical energy”
T + U shows up in some other form, such as heat. That is, conservation of
energy is more general than one might expect from classical mechanics alone;
in addition to kinetic and potential energies, there is thermal energy, the
energy of deformation, energy in the electromagnetic field, and many other
forms as well. Energy is often a useful concept across many disparate physical
systems. We will later on see a more appropriate and physical definition of
the notion energy. For now however, the statement of conservation of T + U
will be very useful.

It is instructive to reverse this exercise by taking the time derivative of
E,

dE

dt
=

d

dt

✓
1

2
mv · v

◆
+

dU

dt
= mv · a + v ·rU . (1.53)

In the first term we used the product rule on v · v, and in the second term
we used the chain rule

dU

dt
=

@U

@t
+
X

i

@U

@xi

dxi

dt
= v ·rU, (1.54)

where we further assumed in the last step that U is a function of the coordi-
nates only, U(r), and not upon time or velocity. We now have

dE

dt
= v · (m a) + v ·rU = v · F + v · (�F) = 0 , (1.55)

where we used F = m a and F = �rU , assuming that all the forces on
the particle arise from the potential U and hence are conservative. We thus
have come back full circle to Newton’s second law. This process has made
it clear however that the potential must only depend on the coordinates of
the particle U(r). Later on however, we will be able to extend this notion to
certain forces involving velocity dependence such as the magnetic force.

EXAMPLE 1-5: A particle attached to a spring revisited
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We want to demonstrate the power of conservation laws in the previous
problem of a particle of mass m confined to a two-dimensional plane and
attached to a spring of spring constant k (see Figure 1.8). The only force
law is Hooke’s law F = �kr. We can check that r ⇥ F = 0, and then find
that the potential energy for this conservative force is

U(b)� U(a) = �
Z b

a

F · dr = �k

Z b

a

r · dr) U =
1

2
k r2 . (1.56)

The total energy is therefore

E =
1

2
m v2 +

1

2
k r2 . (1.57)

The problem has circular symmetry, so it is helpful to use polar coordinates.
The velocity of the particle is

v = ṙ r̂ + r ✓̇ ✓̂ (1.58)

where r and ✓ are the polar coordinates (see Appendix A for a review of
coordinate systems). We then have

E =
1

2
m
⇣
ṙ2 + r2✓̇2

⌘
+

1

2
k r2 . (1.59)

Since E is a constant, this would be a very nice first-order di↵erential equa-
tion for r(t) if we could get rid of the pesky ✓̇ term. Angular momentum
conservation comes to the rescue. We know

L = r⇥ (mv) = m r r̂⇥ (ṙ r̂ + r ✓̇ ✓̂) = m r2 ✓̇ ẑ = constant . (1.60)

We then can write

m r2 ✓̇ = L) ✓̇ =
L

m r2

(1.61)

with L a constant. Putting this back into (1.59), we get

E =
1

2
m ṙ2 +

L2

2 m r2

+
1

2
k r2 , (1.62)

which is a first-order di↵erential equation that determines r(t), from which
we can find ✓(t) using equation (1.61). We have thus solved the problem
without ever dealing with a second-order di↵erential equation arising from
Newton’s second law. In this case, this is not particularly advantageous,
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given that the original second-order di↵erential equations corresponded to
harmonic oscillators. In general, however, tackling first-order di↵erential
equations is likely to be much easier.

It is instructive to analyze the boundary conditions and conservation law
of this system. Newtons’ second law gives are two second order di↵eren-
tial equations in two dimensions. Each di↵erential equations requires two
boundary conditions to yield a unique solution. That’s a total of four con-
stants to determine in tackling the problem through second order di↵erential
equations. Energy conservation on the other hand provides us with a single
first order di↵erential equation that requires one boundary condition. But
the value of energy E is another constant to be specified. So, that is two
constants to fix. Angular momentum conservation gives us another first or-
der di↵erential equations with one boundary condition, plus the value L for
the angular momentum. Hence, that’s another two constants. The energy
and angular momentum conservation equations thus require a total of four
constant to yield a unique solution, as expected from the perspective of the
original second order di↵erential equations. The four boundary conditions of
Newton’s second law are hence directly related to the four constants to fix
in solving the problem through conservation equations.

EXAMPLE 1-6: Newtonian gravity and its potential energy

Newton’s law of gravity for the force on a ‘probe’ particle of mass m due to
a ‘source’ particle of mass M is F = �(GMm/r2)r̂, where r̂ is a unit vector
pointing from the source particle to the probe (see Figure 1.4). The minus
sign means that the force is attractive, in the negative r̂ direction. We can
check to see whether this force is conservative by taking its curl,

r⇥
✓
�GMm

r2

r̂

◆
=

1

r sin ✓

@F r

@'
� 1

r

@F r

@✓
= 0, (1.63)

where we use spherical coordinates throughout (see Appendix A for a review
of coordinate systems). So Newton’s gravitational force is conservative, and
must therefore have a corresponding potential energy function

U(r) = �
Z

F · dr = GMm

Z
dr

r2

= �G M m

r
+ constant, (1.64)



1.4. CONSERVATION LAWS 27

Figure 1.10: Newtonian gravity pulling a probe mass m towards a source
mass M .

where by convention we ignore the constant of integration, which in e↵ect
sets the potential energy to be zero at infinity r !1.

EXAMPLE 1-7: Dropping a particle in spherical gravity

Armed with the potential energy expression due to a spherical gravitating
body, the total energy of a probe particle of mass m, which is conserved, is

E = T + U(r) =
1

2
mv2 � G M m

r
, (1.65)

where M is the mass of the body. Suppose that the probe particle is dropped
from rest some distance r

0

from the center of M , which we assume is so large
that it does not move appreciably as the small mass m falls toward it. The
particle has no initial tangential velocity, so it will fall radially with v2 = ṙ2.
Energy conservation gives

E =
1

2
mṙ2 � G M m

r
. (1.66)

The initial conditions are r = r
0

and ṙ = 0, so it follows that E = �GMm/r
0

.
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Equation (1.66) is a first-order di↵erential equation in r(t). It is said to
be a “first integral” of the second-order di↵erential equation F = ma, which
in this case is

�GMm

r2

= mr̈. (1.67)

That is, if we want to find the motion r(t) it is a great advantage to begin with
energy conservation, because that equation already represents one integral
of F = ma. Solving (1.66) for ṙ,

ṙ = ±
s

2

m

✓
E +

GMm

r

◆
= ±

s
2GM

✓
1

r
� 1

r
0

◆
. (1.68)

We have to choose the minus sign, because when the particle is released from
rest it will subsequently fall toward the origin with ṙ < 0. Dividing the
equation through by the right-hand side and integrating over time,Z r

r
0

dr
p

rp
1� r/r

0

= �
p

2 G M

Z t

0

dt = �
p

2 G M t. (1.69)

At this point we say that the problem has been reduced to quadrature,
an old-fashioned phrase that simply means that all that remains to find r(t)
(or in this case t(r)) is to evaluate an indefinite integral. If we are lucky,
the integral can be evaluated in terms of known functions, in which case we
have an analytic solution. If we are not so lucky, the integral can at least be
evaluated numerically to any level of accuracy we need. An analytic solution
to the integral in equation (1.69), using the substitution r = r

0

sin2 ✓, gives

t(r) =

r
r3

0

2 G M


⇡

2
� sin�1

r
r

r
0

+

r
r

r
0

r
1� r

r
0

�
(1.70)

from which we can find the time it takes to fall to r given some initial value r
0

.
We cannot solve explicitly for r(t) in this case, because the right-hand side
is a transcendental function of r. Note that the constant r

0

in this equation
is directly related to the energy E through equation (1.68).

The problem is much simplified if the particle falls from a great altitude
to a much smaller altitude, so that r ⌧ r

0

, in which case the first term in
equation (1.70) is much bigger than the others. For example, the time it
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takes an astronaut to fall from rest at radius r
0

to the surface of an asteroid
of radius R, where r

0

� R, is essentially

t =
⇡

2

r
r3

0

2GM
, (1.71)

which is independent of R! This insensitivity to the asteroid radius is due to
the fact that nearly all of the travel time is spent at large radii, during which
the astronaut is moving slowly. Changes in the asteroid radius R a↵ect the
overall travel time very little, because the astronaut is falling so fast near
the end. On the other hand, the travel time is clearly quite sensitive to the
initial position r

0

.

EXAMPLE 1-8: Potential energies and turning points for positive
power-law forces

A particle moves in one dimension subject to the power-law force F = �kxn,
where the coe�cient k is positive, and n is a positive integer. Let us find
the potential energy of the particle and also the maximum distance x

max

it can reach from the origin, in terms of its maximum speed v
max

. The
maximum distance is the “turning point” of the particle, because as the
particle approaches this position it slows down, stops at x

max

, and turns
around and heads in the opposite direction.

The potential energy of the particle is the indefinite integral

U = �
Z x

F (x)dx = �
Z x

(�kxn)dx =
k

n + 1
xn+1 (1.72)

plus an arbitrary constant of integration, which we will choose to be zero.
Two of these potential energy functions, one with odd n and one with even n,
illustrate the range of possibilities, as shown in Figure 1.11. The case n = 1,
corresponding to a linear restoring force, corresponds to a Hooke’s-law spring,
where k is the spring constant and the potential energy is U = (1/2)kx2. In
this case the lowest possible energy is E = 0, when the particle is stuck at
x = 0. There are two turning points for energies E > 0, one at the right and
one at the left.

The quadratic force with n = 2 has a cubic potential U = (1/3)kx3 is
positive for x > 0 and negative for x < 0, also as shown. Note that the slope
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Kinetic 
energy

Kinetic
energy

Figure 1.11: Potential energy functions for selected positive powers n. A
possible energy E is drawn as a horizontal line, since E is constant. The
di↵erence between E and U(x) at any point is the value of the kinetic energy
T . The kinetic energy is zero at the “turning points”, where the E line
intersects U(x). Note that for n = 1 there are two turning points for E > 0,
but for n = 2 there is only a single turning point.

of this potential is everywhere positive except at x = 0, so the force on any
particle at x 6= 0 is toward the left, since F = �dU/dx is then negative. So
particles at positive x are pulled toward the origin, while particles at negative
x are pushed away from the origin in this case.

Energy is conserved for this entire set of forces, where

E =
1

2
mv2 +

✓
k

n + 1

◆
xn+1. (1.73)

The potential energy increases with increasing positive x, so the maximum
speed of the particle is at the origin, where E = (1/2)mv2

max. The speed goes
to zero at the maximum value of x attainable, i.e., where E = k xn+1

max/(n+1).
Eliminating E and solving for x

max

,

x
max

=

✓
n + 1

2k

◆
1/(n+1)

(v
max

)2/(n+1) . (1.74)

For the spring force, with n = 1, x
max

is directly proportional to vmax, so if
we double the particle’s velocity at the origin that will double the maximum
x it can achieve.
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Note that the conservation of energy equation (1.73) can be solved for
v ⌘ ẋ to give

ẋ = ±
s

2

m

✓
E �

✓
k

n + 1

◆
xn+1

◆
, (1.75)

which is a first-order di↵erential equation. Dividing by the right-hand side
and integrating over time yields

Z s
dx

E � (k/(n + 1))xn+1

= ±
r

2

m

Z
dt = ±

r
2

m
t + C, (1.76)

where C is a constant of integration: The problem has been reduced to
quadrature. For some values of n the integral on the left can be evaluated
in terms of standard functions; this includes the cases n = �1, 0, and +1,
for example. For other values of x the integral can be evaluated numerically.
Note that conservation of energy results in a first-order di↵erential equation,
so specifying the constant of integration C is equivalent to specifying one
initial condition.

Rather than integrating equation (1.73), which leads to equation (1.76),
we can di↵erentiate the equation instead. The time derivative of equa-
tion (1.73) is

mẋẍ +

✓
k

n + 1

◆
(n + 1)xnẋ = 0, (1.77)

since dE/dt = 0. The velocity ẋ is not generally zero, so we can divide it
out, leaving

mẍ = �kxn (1.78)

which we recognize as m a = F for the given force F = �kxn. That is, the
time derivative of the energy conservation first-order di↵erential equation is
simply F = m a, which is a second-order di↵erential equation. Often energy
conservation serves as a “first integral of motion”, halfway toward a complete
solution of the second-order equation F = m a.
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1.5 Forces of nature

The hallmark of Newtonian mechanics — the relationship F = m a — is
only part of the physical content of a mechanics problem. To determine the
dynamics of a particle, we still need the left-hand side of the equation: we
need an independent specification of the forces. This is a separate physics
statement that we need to discover and learn about through experimentation
and additional theoretical considerations. We may then be tempted to ask
the bold question: what are all of the possible forces that can arise on the left-
hand side of Newton’s second law? Surprisingly, this question has a complete
answer, an exhaustive and finite catalogue of possibilities.

To date, we are aware of four, and only four, fundamental forces in nature
— of which only two can be used in classical, Newtonian mechanics. For the
sake of completeness, let us list all four:

1. The electromagnetic force can be attractive or repulsive, and acts
only on particles that carry a certain mysterious attribute we call ‘elec-
tric charge’. This force is relevant from subatomic length scales to
planetary length scales, and it plays a role in virtually every physical
setting.

2. The gravitational force is an omni-present, attractive force in classi-
cal physics, that acts on anything that has mass. Gravity is by far the
weakest of the four forces, but at macroscopic length scales it is very
noticeable nonetheless if objects are essentially electrically neutral, so
that the much stronger electromagnetic force vanishes.

3. The weak force is subatomic in nature, acting only over very short
distances (around 10�15 meters!), where it is essential to use quantum
mechanics; the weak force therefore plays no role in typical classical
mechanics problems. The weak force is important for understanding
radioactivity, neutrinos, and the ever-elusive Higgs boson particle. We
have also learned recently that the weak force is closely related to elec-
tromagnetism. The electromagnetic and weak forces collectively are
sometimes referred to as the electroweak force.

4. The strong force, which is also a force of subatomic relevance (around
10�18 meters!), binding quarks together and underlying all nuclear en-
ergy. This is the strongest of all the forces, but in spite of its great
importance it is not directly relevant to classical mechanics.
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Gravity and electromagnetism are the two mainstays of classical mechan-
ics. In a setting where the strong and weak forces play a relevant dynamical
role, the framework of classical mechanics itself is typically already faltering
and a full extension to quantum mechanics is needed. Hence, our classical
mechanics world will deal primarily with gravitational and electromagnetic
forces. How about the friction and spring forces encountered in the previous
examples, the good old normal force, the tension force in a rope, and a myriad
of other force laws that make prominent appearances on the left-hand side
of Newton’s second law? These are all macroscopic e↵ective forces, not fun-
damental ones. Microscopically, they originate entirely from the electromag-
netic force law. For example, when two surfaces in contact rub against each
other, the atoms at the interface interact microscopically through Coulomb’s
law of electrostatics. When we add a large number of these tiny forces, we
have an e↵ective macroscopic force that we call friction. The microscopic
details can be tucked into one single parameter, the coe�cient of friction.
Similarly, the e↵ect of a large number of liquid molecules on a bacterium
average out into a simple force law, F = �b v, where b is the only parameter
left over from the detailed microscopic interactions — which are once again
electromagnetic in origin. Contact forces, as they are called, are hence
approximate statements and originate from the electromagnetic force law.

The reader may rightfully be surprised that complicated microscopic dy-
namics can lead to rather simple e↵ective force laws — often described by a
few macroscopic parameters. This is a rather general feature of the natural
laws. When microscopic complexity is averaged over a large number of parti-
cles and length scales, it is expected that the resulting macroscopic system is
described through simpler laws with fewer parameters. This is not supposed
to be obvious, although it may feel intuitive. Realization of its significance
and implications in physics underly several physics Nobel prizes in the late
twentieth century2.

2The Nobel prize for the development of the renormalization group was awarded to
Kenneth G. Wilson in 1982. Wilson described most concisely and elegantly the idea that
physics at large length scales is sensitive to physics at small length scales only through
a finite number of parameters. However, the idea pervades other major benchmarks of
theoretical physics, such as the Nobel prizes of 1999 to Gerardus ’t Hooft and Martinus
J. G. Veltman and of 1965 to Sin-Itiro Tomonaga, Julian S. Schwinger, and Richard P.
Feynman.
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1.6 Dimensional analysis

Dimensional reasoning is a powerful tool that can help us learn how one
quantity depends upon others. The secret is that in classical mechanics,
both sides of an equation must have the same dimensions of mass M , length
L, and time T . All other quantities can be expressed in terms of these three.
For example, the dimensions of momentum (which we will write as [p], with
square brackets) are ML/T , and the dimensions of energy are [E] = ML2/T 2.

For example, suppose we hold up a ball, drop it from rest, and then seek
to find its momentum when it strikes the ground. The first step is to ask
“what would the momentum likely depend upon?” Using physical intuition, it
seems reasonable that the momentum might depend upon the ball’s mass m,
the height h from which it is dropped, and the acceleration of gravity g. We
are not sure how it depends upon these quantities, however. The next step
is to compare dimensions. The dimensions are [p] = ML/T, [m] = [M ], [g] =
L/T 2, and [h] = L. The only way to get the “M” in momentum is to suppose
that p is directly proportional to m, because neither g nor h contains a
dimension of mass. Then the only way to get the 1/T in momentum is to
suppose that p is proportional to

p
g. The product m

p
g has the dimensions

(M/T )
p

L, which only needs to be multiplied by
p

h to achieve the correct
dimensions for momentum. That is, the momentum when the ball strikes
the ground must have the dependence

p = k m
p

gh, (1.79)

where k is some dimensionless constant. Dimensional reasoning alone cannot
give us this constant, so in fact we still do not know what the momentum
of the ball is when it reaches the ground. What we do know, however, is
that if the momentum at the ground of a particular dropped ball is p

0

, the
momentum at the ground of a similar ball dropped from twice the height will
be
p

2 p
0

, or the momentum of a ball dropped on the Moon from the original
height will be p

0

/
p

6, since gravity on the Moon is only 1/6th that on Earth.
Note that this particular problem is easily solved exactly using F = m a,

giving the same equation while providing the value k =
p

2. Dimensional
analysis, however, works also in much more complicated problems where the
proportionality constant may be more di�cult to find.

In general, we can solve such problems by writing a general relation such
as

p = k m↵g�h� (1.80)
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where ↵, �, and � are constants to be determined. We then expand every-
thing in terms of mass, length, and time

ML

T
⇠M↵ L�

T 2 �
L� (1.81)

yielding simple equations for ↵, �, and �

1 = ↵ 1 = � + � � 1 = �2 � , (1.82)

confirming that ↵ = 1, � = 1/2, and � = 1/2.

EXAMPLE 1-9: Find the rate at which molasses flows through a
narrow pipe

By flow rate, we means the volume/second (with dimensions [flow rate] =
L3/T ) that passes though a pipe. We expect that this depends upon the
radius of the pipe, with [r] = L, since a wider pipe should allow more fluid
to flow than a narrower one. It should also depend upon friction within
the fluid itself, and between the fluid and sides of the pipe. Friction in
a fluid is characterized by its viscosity ⌘, with dimensions [⌘] = M/LT ,
and with values that can be found in tables.3 The greater the viscosity,
the greater the friction, and the lower the flow rate should be: molasses or
honey (with high viscosity) should flow more slowly than a light oil (with
low viscosity). Finally, the flow rate should also depend upon how hard
one pushes on the fluid; i.e., the pressure di↵erence �P between one end of
the pipe and the other. More precisely, it should depend upon the pressure
di↵erence/unit length of pipe, since it makes sense that the viscous friction
must be overcome by the pressure gradient within the pipe. The dimensions
of pressure are [force/area] = (ML/T 2]/L2 = M/(LT 2), so the dimensions
of pressure per unit length are [�P/`] = M/(L2T 2)4.

3The viscosity ⌘ of a fluid can be measured in principle by placing the fluid between
two parallel metal plates of area A that are separated by a distance d. When one plate
is kept fixed while the other is moved parallel to the fixed plate with constant velocity v,
the drag force on the moving plate is observed to have the magnitude F = ⌘Av/d. From
this formula one can see that the dimensions of ⌘ are M/LT .

4In this problem we are assuming smooth, so-called laminar flow, which is nonturbu-
lent. High-viscosity fluids (like molasses) that move slowly in narrow pipes are less likely
to become turbulent. Turbulent flow is more complicated and depends on additional
parameters.
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Now we can formally calculate, using dimensional analysis, how the vol-
ume per second of the flow depends upon r, ⌘, and �P/`, by taking arbitrary
powers of each and finding the powers by matching dimensions on both sides.
That is,

flow volume/sec = k r↵⌘�(�P/`)� (1.83)

where k is a dimensionless constant. Therefore dimensionally,

L3

T
= L↵

✓
M

LT

◆� ✓
M

L2T 2

◆�

. (1.84)

We match exponents in turn for M , L, and T : That is,

mass: 0 = � +� length: 3 = ↵���2� time:�1 = ���2�(1.85)

From the first of these we learn that � = ��, so then from the third equation
we find that � = �� = 1. Finally, the second equation tells us that ↵ =
3 + � + 2� = 4. Thus the equation for the flow rate through a pipe is

flow volume/sec = k

✓
�P/`

⌘

◆
r4 (1.86)

Again, dimensional analysis alone cannot tell us the numerical value of the
dimensionless number k. However, we have learned a lot. Most spectacularly,
we have learned that the flow rate of a highly viscous fluid is not proportional
to the cross-sectional area of the pipe, but to the fourth power of the radius:
A pipe of twice the radius will transport sixteen times the volume of fluid.
This formula corresponds to what is called Poiseuille flow, and an exact
analytic calculation shows that the constant k = 6⇡.

We have carried out the dimensional analysis here in a rather formal
way; one can often speed up the process without using arbitrary powers like
↵, �, and �. Note from equation (1.86) that the flow rate must depend upon
the ratio (�P/`)/⌘ to cancel out the dimension of mass, so we can rewrite
equation (1.86) as

L3

T
= L↵

✓
M

L2T 2

⇥ LT

M

◆�

= L↵

✓
1

LT

◆�

, (1.87)

from which it is clear that � = 1 to obtain the needed 1/T dimension, and
so then ↵ = 4 to obtain the L3.



1.7. SYNOPSIS 37

1.7 Synopsis

So much for our very brief summary of Newtonian mechanics. Particles obey
Newton’s laws of motion, and depending upon the nature of the forces on
a particle, one or another of momentum, angular momentum, and energy
may be conserved. The momentum of a particle is conserved if there is no
net force on it, while the angular momentum of the particle is conserved if
there is no net torque on it. Energy is conserved if all the forces acting are
conservative and time independent; i.e., if the work done by each force is
independent of the path of the particle. Similar laws apply to systems of
particles.

Given the forces on a particle together with its initial position and veloc-
ity, a classical particle moves along a single, precise path. That is the vision
of Isaac Newton: particles follow deterministic trajectories. When viewed
from an inertial frame, a particle moves in a straight line at constant speed
unless a net force is exerted on it, in which case it accelerates according to
a = F/m.

We have required that the fundamental laws of mechanics obey what is
called the principle of relativity, which means that if a law is valid in one
inertial frame it is valid in all inertial frames. According to the principle,
there is no preferred inertial frame: the fundamental laws can be used by ob-
servers at rest in any one of them. This physical statement can be translated
into a mathematical statement that given a mathematical transformation of
coordinates and other quantities from one frame to another, the fundamental
equations should look the same in all inertial frames. We have assumed that
the Galilean transformation is the correct transformation of coordinates,
and have shown that Newton’s laws are invariant under that transformation,
if any particular force applied is the same in all inertial frames. It is therefore
consistent to take Newton’s laws as fundamental laws of mechanics.

There is a problem, however. The fundamental laws of electromag-
netism are not Galilean invariant. Therefore something has to give, either
the universality of Maxwell’s equations of electromagnetism, or the Galilean
transformation. In 1905 Albert Einstein decided that it is the Galilean trans-
formation that has to go, which then necessarily compromises our entire un-
derstanding of the fundamental laws of mechanics. We will begin to explore
the e↵ects of Einstein’s ideas in Chapter Two.
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1.8 Exercises and Problems

PROBLEM 1-1 : A stream flows at speed vW = 0.50 m/s between parallel
shores a distance D = 35 m apart. A swimmer swims at speed vs= 1.00 m/s
relative to the water. Use the Galilean velocity transformation to answer the
following questions. (a) If the swimmer swims straight toward the opposite shore,
i.e., in a direction perpendicular to the shoreline as seen by the swimmer, how
long does it take her to reach the opposite shore, and how far downstream is she
swept? (b) If instead the swimmer wishes to reach the opposite shore at a spot
straight across the stream, at what angle should she swim relative to the stream
flow direction, so as to arrive in the shortest time? What is this shortest time?

PROBLEM 1-2 : A river of width D flows at uniform speed V
0

. Swimmers A
and B, each of whom can swim at speed Vs relative to the water, decide to race one
another beginning at the same spot on the shore. Swimmer A swims downstream
a distance D relative to the shore, and immediately swims back upstream to the
starting point. Swimmer B swims to a point diametrically opposite the starting
point on the opposite shore, and then swims back. Assume vs > V

0

. Find the
total time for each swimmer. Who wins the race?

PROBLEM 1-3 : An ultralight aircraft is 5.0 km due west of the landing field.
It can fly 25 km/hr in stationary air. However, the wind is blowing at 25 km/hr
from the southwest at a 60o angle to the direction of the landing field. (a) At what
angle to the east must the pilot aim her craft to reach the landing field? (b) How
long will it take her to reach the landing field if she flies as described?

PROBLEM 1-4 : A hailstone of mass m is subject to a downward gravitational
force mg and an upward force due to air resistance, which we will model here as
F

drag

= �kv2, where k is a constant and v is the speed of the hailstone relative to
the air: the minus sign indicates that the drag force is opposite to the direction of
motion. If the model hailstone starts at rest at height h, (a) how long does it take
to reach the ground, and (b) what is its speed just before it strikes the ground?

PROBLEM 1-5 : Write out the most general solutions of the (a) overdamped
(b) underdamped (c) critically damped harmonic oscillator, expressing in each case
the arbitrary constants in terms of the oscillator’s initial position x

0

and velocity
v
0

.

PROBLEM 1-6 : Planets have roughly circular orbits around the Sun. Using
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the table below of the orbital radii and periods of the inner planets, how does the
centripetal acceleration of the planets depend upon their orbital radii? That is,
find the exponent n in a = constant ⇥ rn. (Note that 1 A. U. = 1 astronomical
unit, the mean Sun-Earth distance.)

planet mean orbital radius (A.U.) period (years)
Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881

PROBLEM 1-7 : A chain is tied tightly between two trees and a force F
0

is
applied at right angles to the chain at its midpoint. With the chain in equilibrium,
with the ends of the chain at angle ✓ from the straight line between the trees, what
is the tension in the chain?

PROBLEM 1-8 : A rope of mass/length � is in the shape of a circular loop of
radius R. If it is made to rotate about its center with angular velocity !, find the
tension in the rope. Hint : consider a small piece of the rope to be a “particle.”

PROBLEM 1-9 : One end of a string of length ` is attached to a small ball,
and the other end is tied to a hook in the ceiling. A nail juts out from the wall,
a distance d below the hook. With the string straight and horizontal, the ball is
released. When the string becomes vertical it meets the nail, and then the ball
swings upward until it is directly above the nail. (a) What speed does the ball
have when it reaches this highest point? (b) Find the minimum value of d, as a
fraction of `, such that the ball can reach this point at all.

PROBLEM 1-10 : A damped oscillator consists of a mass m attached to a
spring k, with frictional damping forces. If the mass is released from rest with
amplitude A, and after 100 oscillations the amplitude is A/2, what is the total
work done by friction during the 100 oscillations?

PROBLEM 1-11 : Half of a chain of total mass M and length L is placed on
a frictionless table top, while the other half hangs over the edge. If the chain is
released from rest, what is the speed of the last link just as it leaves the table top?

PROBLEM 1-12 : (a) A neutron in a nuclear reactor has a head-on collision
with a carbon nucleus, part of the graphite “moderator.” The carbon nucleus is
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initially at rest, and has 12 times the mass of a neutron. What fraction of the
neutron’s initial speed is lost in the collision? (b) If a neutron collides head-on
with a deuteron (md = 2mn) used as a moderator in a di↵erent reactor, what
fraction of the neutron’s initial speed is lost? (Slower neutrons are more apt to
cause nuclear fission in the fissionable uranium nucleus 235U, and less likely to be
lost by absorption in 238U; hence the need for moderators.) Assume elastic (i.e.,
kinetic-energy conserving) collisions.

PROBLEM 1-13 : Consider an arbitrary power-law central force F(r) = krnr̂,
where k and n are constants and r is the radius in spherical coordinates. Prove
that such a force is conservative, and find the associated potential energy of a
particle subject to this force.

PROBLEM 1-14 : Estimate the radius (in meters) of the largest spherical
asteroid that an astronaut could escape from by jumping.

PROBLEM 1-15 : An overdamped oscillator is released at x = x
0

with initial
velocity v

0

. What is the maximum number of times the oscillator can subsequently
pass through x = 0?

PROBLEM 1-16 : The potential energy of a mass m on the end of a Hooke’s-
law spring of force constant k is (1/2)kx2. If the maximum speed of the mass
subject to this potential energy is v

0

, what are the turning points of the motion?

PROBLEM 1-17 : A simple pendulum is constructed by hanging a bob of mass
m on the end of a light cord of length `, pulling it to one side by angle ✓

0

from
the vertical, and then letting it swing back and forth. We expect that the period
P of the pendulum might depend on any or all of m, `, and ✓

0

, and also the local
gravitational field strength g. Using dimensional analysis, find how P depends
upon m, `, and g. (The angular amplitude ✓

0

is dimensionless, so we cannot learn
how P depends on ✓

0

using dimensional analysis alone.)

PROBLEM 1-18 : The velocity of waves on the surface of a lake depends
upon gravity g and the depth h of the lake, as long as the wavelength of the
waves satisifies �� h, corresponding to what is called “shallow water waves”. If a
traveling wave has velocity v

0

and subsequently encounters a part of the lake that
is twice as deep, by what factor will the wave velocity be changed?

PROBLEM 1-19 : The velocity of waves on the surface of a lake depends upon
gravity g and the wavelength � as long as the depth of the lake h satisfies h >> �,
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corresponding to what is called “deep water waves”. If we were to increase the
wavelength by a factor of two, by what factor would the wave velocity be changed?

PROBLEM 1-20 : Capillary waves on the surface of a liquid come about
because of the liquid’s surface tension �, which has dimensions M/T 2. The velocity
of capillary waves depends upon � and also upon the wavelength � and the density
⇢ of the liquid. Two capillary waves on the same liquid have wavelengths �

1

and
�

2

= 2�
1

. What is the ratio of their velocities?

PROBLEM 1-21 : The Planck length `p depends upon Planck’s constant ~,
Newton’s constant of gravity G, and the speed of light c. If Planck’s constant were
twice as large as it actually is, how would that a↵ect `p? How would it a↵ect the
Planck time tp and Planck mass mp, also both defined in terms of the same
three fundamental constants? Taking the proportionality constant to be unity in
each case (which is how they are actually defined), how large are the Planck length,
mass, and time numerically in SI units (kilograms, meters, seconds)?

PROBLEM 1-22 : Two very flat parallel metal plates, with a vacuum between
them and surrounding them, are attracted to one another by what is called the
Casimir force, as predicted by quantum field theory. This force is proportional to
the area A of each plate, and also depends upon the distance d between the plates,
the speed of light c, and Planck’s constant (divided by 2⇡) ~. If the distance d is
reduced by half, does the Casimir force increase or decrease? By what factor?

PROBLEM 1-23 : A ball of mass m is tossed straight upward from the ground
with velocity v

0

. The time it takes for it to rise and fall back to the ground might
depend upon its mass m, v

0

, and the gravitational field g. If v
0

were doubled,
by what factor would the time above ground increase? What would happen in m
were doubled, keeping v

0

and g the same?

PROBLEM 1-24 : Two astronauts are instantaneously at rest above a spherical
asteroid of mass m and radius R. One astronaut is at distance r and the other at
distance 2r from the asteroid’s center, where r ⌧ R. If it takes time T

0

for the
first astronaut to fall to the asteroid, about how long does it take the second to
fall?

PROBLEM 1-25 : An exploding nuclear bomb creates a rapidly-expanding
shock wave in the air surrounding the blast. Within the shock wave the air glows
brightly, because it has been strongly heated, giving the appearance of a fireball.
The radius R of the expanding ball of hot air depends upon time t, the energy E of
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the blast, and the density ⇢ of the air. (It might depend also upon the ambient air
pressure, but to a good approximation it does not, because the ambient pressure
is so much smaller than the pressures created by the blast.) (a) Using dimensional
reasoning, find out how R depends upon t, E, and ⇢. (b) If the shock wave has
radius R

0

at time 0.01 s, what is its radius at 0.1 s? (c) The picture shows the
fireball of the Trinity test, the first nuclear explosion, at 05.30 hours, 16 July 1945,
Alamogordo, N. M., at time 0.025 s after detonation. The diameter is about 250
m, as shown. Estimate the energy of the blast in joules and in equivalent tonnes
of TNT, assuming the dimensionless coe�cient in the expression for R(t, E, ⇢) is
unity (the coe�cient has been calculated to be 1.003). The explosive energy of
one ton of TNT is 4.2 ⇥ 109 J. [Pictures of the first explosion were published in
Life Magazine. Using dimensional reasoning, several physicists around the world
deduced the yield of the explosion.] (INCLUDE PHOTO)

PROBLEM 1-26 : Steady rain falls at constant speed vr straight down as
observed by a pedestrian standing on a sidewalk. A bus travels along the horizontal
street at speed vb. (a) At what angle ✓ to the vertical do the raindrops fall, as
seen by the bus driver? (b) Suppose the bus has no windshield, leaving a hole in
the flat, vertical front of the bus. The driver wants to travel forward at constant
speed in a straight line from point A to point B. To minimize the total amount
of water entering through the hole, should the driver drive the bus very slowly, as
quickly as possible, or how?

PROBLEM 1-27 : An object of mass m is subject to a drag force F = �kvn,
where v is its velocity in a medium, and k and n are constants. If the object starts
with velocity v

0

at time t = 0, find its subsequent velocity as a function of time.

PROBLEM 1-28 : A space traveler pushes o↵ from his coasting spaceship
with relative speed v

0

; his mass and spacesuit have mass M , and he is carrying
a wrench of mass m. Twenty minutes later he decides to return, but his thruster
doesn’t work. In another forty minutes his oxygen supply will be exhausted, so he
immediately throws the wrench away from the ship at speed vw relative to himself
prior to the throw. (a) What then is his speed relative to the ship? (b) In terms
of given parameters, what is the minimum value of vw needed so he will return in
time?

PROBLEM 1-29 : A neutron of mass m and velocity v
0

collides head-on with
a 235

92

U isotope of mass M at rest in a nuclear reactor, and the neutron is absorbed
to form 236

92

U. (a) Find the velocity vA of the 236

92

U isotope in terms of m,M , and
v
0

. (b) The 236

92

U isotope subsequently fissions into two isotopes of equal mass,
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each emerging at angle ✓ to the forward direction. Find the speed vB of each final
isotope in terms of given parameters.

PROBLEM 1-30 : It typically takes about 10 months for a spacecraft journey
from Earth to Mars, and because of the loss of bone mass and other physiological
problems it may be worthwhile providing an artificial gravity for humans to make
the trip. One proposal is to attach the spacecraft (of mass M) to one end of
a straight cable of length ` , attach an equal-mass counterweight to the other
end, and then make the entire assembly rotate about the center of the cable with
angular velocity !. (a) Find the e↵ective gravity within the spacecraft in terms of
given parameters. (b) If the cable has negligible mass, find the tension within it as
a function of the distance r from its center. (c) If instead the cable has constant
mass per unit length �, find the tension within this cable as a function of r.

PROBLEM 1-31 : A circular hoop of wire of radius R is oriented vertically,
and is then forced to rotate with angular velocity ! about a vertical axis through
its center. A small bead of mass m slides frictionlessly on the hoop. There is
a downward gravitational field g. (a) Show that if ! >

p
g/R, there are four

di↵erent locations on the hoop for which the bead can be in equilibrium. Find
the angles ✓ for these four locations, where ✓ is the angle of the point up from
the bottom of the hoop, measured between the vertical and a radial line from the
center of the hoop. (b) Show that if ! <

p
g/R, there are only two equilibrium

positions. Where are they?

PROBLEM 1-32 : A particle of mass m is subject to the force F = ↵ sin(kx).
(a) If the maximum value of the corresponding potential energy is ↵/k, what are
the turning points for a particle of energy E = ↵/2k? (b) Find the speed of the
particle as a function of position, if the particle starts at rest at one of the turning
points. (c) Find an expression for the position of the particle as a function of time.

PROBLEM 1-33 : Show that if a mass distribution is spherically symmetric,
the gravitational field inside it is directed radially inward, and its magnitude at a
radius r from the center is simply GM(r)/r2, where M(r) is the mass within the
sphere whose radius is r.

PROBLEM 1-34 : A non-rotating uniform-density spherical asteroid has mass
M and radius R. (a) If a straight tunnel is drilled through the asteroid from one
side to the other, which passes through the asteroid’s center, how long would it
take an astronaut to fall from one end of the tunnel to the other and back to
the starting point again, by simply stepping into the tunnel at one end? (b) If a
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di↵erent straight tunnel is drilled through the same asteroid, where this time the
tunnel misses the asteroid’s center by a distance R/2, how long would it take the
astronaut to fall from one end to the other and back, assuming there is no friction
between the sides of the tunnel and the astronaut? (c) Now suppose that instead
of falling through the tunnel, the astronaut is given an initial tangential velocity of
just the right magnitude so the astronaut is inserted into circular orbit just above
the surface. How long will it take the astronaut to return to the starting point in
this case?

PROBLEM 1-35 : Four mathematically equivalent conditions for a force to
be conservative are given in the chapter. Select one of the conditions and suppose
that it is valid for some force F. Show that each of the other three conditions is a
necessary consequence.

PROBLEM 1-36 : A particle is attached to one end of an unstretched Hooke’s-
law spring with force constant k. The other end of the spring is fixed in place. If
now the particle is pulled so the spring is stretched by a distance x, the potential
energy of the particle is U = (1/2)kx2. (a) Now suppose there are two unstretched
springs with the same force constant k that are laid end-to-end in the y direction,
with a particle attached between them. The other ends of the springs are fixed in
place. Now the particle is pulled in the transverse direction a distance x. Find its
potential energy U(x). (b) U(x) is proportional to what power of x for small x,
and to what power of x for large x?

PROBLEM 1-37 : A particle of mass m is subject to the central attractive force
F = �kr, a force that in e↵ect is that of a Hooke’s-law spring of zero unstretched
length, whose other end is fixed to the origin. The particle is placed at an initial
position r

0

and then given an initial velocity v
0

that is not colinear with r
0

. (a)
Explain why the subsequent motion of the particle is confined to a plane that
contains the two vectors r

0

and v
0

. (b) Find the potential energy of the particle.
(c) Explain why the particle’s angular momentum is conserved about the origin,
and use this fact to find a first-order di↵erential equation of motion involving r
and dr/dt. (d) Solve the equation for t(r), and show that the particle has both an
inner and an outer turning point.

PROBLEM 1-38 : A rock of mass m is thrown radially outward from the
surface of a spherical, airless moon. From Newton’s second law its acceleration
is r̈ = �GM/r2, where M is the moon’s mass and r is the distance from the
moon’s center to the rock (the minus sign indicates that the acceleration is inward,
toward the moon’s surface). The energy of the rock is conserved, so (1/2)mṙ2 �
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GMm/r = E = constant. (a) Show by di↵erentiating this latter equation that
energy conservation is a first integral of F = mr̈ in this case. (b) What is the
minimum value of E (in terms of given parameters), for which the rock will escape
from the moon? (c) For this case of the escape energy Eesc, what is ṙ(t), the
velocity of the rock as a function of the time since it was thrown? Also find ṙ(t)
if (d) E > Eesc (e) E < Eesc.

PROBLEM 1-39 : The Friedman equations have played an important role in
big-bang cosmology. They feature an “expansion factor” a(t), proportional to the
distance between any two points (such as the positions of two galaxies) that are
su�ciently remote from one another that local random motions can be ignored.
If a increases with time, the distance between galaxies increases proportionally,
corresponding to an expanding universe. If we model for simplicity the universe
as filled with pressure-free dust of uniform density ⇢, the Friedman equations for
a(t) are

ä = �4⇡G⇢

3
a and ȧ2 =

8⇡G⇢

3
a2 � kc2

R2

0

(1.88)

where G is Newton’s gravitational constant, c is the speed of light, R
0

is the
distance between two dust particles at some particular time t

0

, and k = +1, -1, or
0. The density of the dust is inversely proportional to the cube of the scale factor
a(t), i.e., ⇢ = ⇢

0

(a
0

/a)3, where ⇢
0

is the density when a = a
0

. Therefore

ä = �4⇡G⇢
0

a3

0

3a2

and ȧ2 =
8⇡G⇢

0

a3

0

3a
� kc2

R2

0

. (1.89)

(a) Show that if we set the origin to be at one of the two chosen dust particles,
then if M is the total mass of dust within a sphere surrounding this origin out to
the radius of the other chosen particle, then the equations can be written

ä = �(GM/R3

0

)
a2

and
1
2
ȧ2 � (GM/R3

0

)
a

= � kc2

2R2

0

⌘ ✏ (1.90)

where ✏ and M are constants. (b) Show that the second equation is a first integral
of the first equation. (c) Compare these equations to the F = ma and energy
conservation equations of a particle moving radially under the influence of the
gravity of a spherical moon of mass M . (d) Einstein hoped that his general-
relativistic equations would lead to a static solution for the universe, since he
(like just about everyone before him) believed that the universe was basically at
rest. The Friedman equations resulting from his theory show that the universe is
generally expanding or contracting, however, just as a rock far from the Earth is
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not going to stay there, but will generally be either falling inward or on its way out.
So Einstein modified his theory with the addition of a “cosmological constant” ⇤,
which changed the Friedman equations for pressure-free dust to

ä = �(GM/R3

0

)
a2

+
⇤
3

a and
1
2
ȧ2 � (GM/R3

0

)
a

� ⇤
6

a2 = ✏. (1.91)

Show that these equations do have a static solution, and find the value of ⇤ for
which the solution is static. (e) Show however (by sketching the e↵ective potential
energy function in the second equation) that the static solution is unstable, so
that if the universe is kicked even slightly outward it will accelerate outward, or
if it is kicked even slightly inward it will collapse. A static solution is therefore
physically unrealistic. (Einstein failed to realize that his static solution was un-
stable, and later, when Edwin Hubble showed from his observations at the Mount
Wilson Observatory that the universe is in fact expanding, Einstein declared that
introducing the cosmological constant was “my biggest blunder”.) (f) Suppose the
cosmological constant is retained in the equations, but that the dust is removed
so that M = 0. Solve the equations for a(t) in this case. The solution is the de
Sitter model, an “inflationary” model of the expanding universe. What is the
constant ✏ for the de Sitter model? (g) Make a qualitative sketch of a(t) if both M
and ⇤ are nonzero. Of the terms containing M and ⇤, which dominates for small
times? For large times?


