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�e prettiest math I know, and extremely useful.
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1. Overview

�is handout summarizes key results in the theory of functions of a complex variable,
leading to the inverse Laplace transform. I make no pretense at rigor, but I’ll do my best to
ensure that I don’t say anything false. �e main points are:

1. �e Cauchy-Riemann conditions, which must be satis�ed by a di�erentiable function
f (z) of a complex variable z.

2. ∮ f (z) dz = 0 if f (z) is continuous and di�erentiable everywhere inside the closed
path.

3. If f (z) blows up inside a closed contour in the complex plane, then the value of
∮ f (z) dz is 2πi times the sum of the residues of all the poles inside the contour.

4. �e Fourier representation of the delta function is ∫
∞
−∞ e ikx dk = 2πδ(x).

5. �e inverse Laplace transform equation.

2. Cauchy-Riemann

For the derivative of a function of a complex variable to exist, the value of the derivative
must be independent of the manner in which it is taken. If z = x + iy is a complex variable,
which we may wish to represent on the x y plane, and f (z) = u(x , y) + iυ(x , y), then the
value of d f

dz should be the same at a point z whether we approach the point along a line parallel
to the x axis or a line parallel to the y axis. �erefore,

d f
dz

= ∂u
∂x

+ i ∂υ
∂y

(along x)

d f
dz

= ∂u
∂(iy)

+ i ∂υ
∂(iy)

= ∂υ
∂y

− i ∂u
∂y

(along y)

Comparing real and imaginary parts, we obtain the Cauchy-Riemann equations:

∂u
∂x

= ∂υ
∂y

and ∂υ
∂x

= −∂u
∂y

(1)

3. Integrals around closed paths

Stokes’s theorem holds that ∮ F ⋅ dl = ∯ (∇× F) ⋅ dA, indicating that the integral of the
curl of a vector function over an enclosed area is equal to the line integral of the function
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4. RESIDUES

over the boundary to the area. �e right-hand rule is used to orient the contour with respect
to the outward normal to the area.

�e z component of the curl is (∇×F)z =
∂Fy
∂x − ∂Fx

∂y . By Stokes’s theorem, the integral of
this quantity over a closed area in the x y plane must be equal to the line integral around the
area,

∬ (
∂Fy

∂x
− ∂Fx
∂y

) dx d y = ∮ (Fx dx + Fy d y)

Now consider the integral of a function of a complex variable around a closed contour
on the complex plane,

∮ f (z) dz = ∮ (u + iυ)(dx + i d y) = ∮ (u dx − υ d y) + i ∮ (u d y + υ dx)

We can now use Stokes’s theorem to show that each of the integrals on the right vanishes.
For the �rst integral, let Fx = u and Fy = −υ. �en

∮ (u dx − υ d y) =∬ (−∂υ
∂x

− ∂u
∂y

) dx d y

but the integrand vanishes by the Cauchy-Riemann equation. Similarly for the second inte-
gral, let Fx = υ and Fy = u. �en

∮ (υ dx + u d y) =∬ (∂u
∂x

− ∂υ
∂y

) dx d y = 0

�erefore, the integral of f (z) around a closed contour vanishes, provided that f (z) is
everywhere di�erentiable inside the contour.

4. Residues

Suppose that f (z) blows up at a point z0 inside a closed contour. Although I will not
justify this, suppose further that in the neighborhood of z0 the function may be expanded
in a Laurent series, which is a generalization of Taylor’s series:

f (z) =
∞
∑

n=−∞
an(z − z0)n

Notice that unlike Taylor’s series, the Laurent series includes both negative and positive
powers. Since the integral around any closed contour that doesn’t contain a singularity van-
ishes, we are free to deform the contour to include a detour that comes within є of z0, then
goes around a circle of radius є centered on z0 and then heads right back out from where
it came, as illustrated in Fig. 1. �e contributions along the path in and then out precisely
cancel, and we are le� with the contribution around the small circle.
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5. FOURIER REPRESENTATION OF δ(X)
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y

Figure 1: Deforming a contour to
remove a pole from the interior of
a region. Only the a−1ζ−1 term in
the Laurent expansion of f (z) con-
tributes to the integral around the cir-
cle of in�nitesimal radius є; the coef-
�cient a−1 is called the residue of the
pole.

Let ζ = z − z0 = єe iθ , where є is a constant. �en

∮ f (z) dz = ∮ (
∞
∑

n=−∞
anζn) dζ =

∞
∑

n=−∞
∮ anζn dζ

where I have blithely interchanged the order of inte-
gration and summation. See the math department for
the details. We now must evaluate ∮ ζn dζ , but unless
n = −1, ∫ ζn dζ = ζn+1

n+1 . �is is a single-valued function
of ζ , which means that when we evaluate at ζ = єe iθ for
θ = 2π and θ = 0, we get the same value. Hence, the
integral vanishes.

When n = −1 we have to proceed more carefully:

∮
dζ
ζ

= ln(єe iθ)∣
2π
0 = (ln є + iθ)∣2π

0 = 2πi (2)

So, the only term in the in�nite series that contributes is
the one with n = −1, and it contributes 2πi times the co-
e�cient a−1. �is coe�cient is called the residue. �us,
we have the residue theorem:

∮ f (z) dz = 2πi∑ residues (3)

where the sum of residues means the sum of the residues of all poles lying within the contour.
If the contour runs through a pole, then we get half the residue, as you can readily verify by
returning to Eq. (2) and noting that we now integrate only through an angular range of π.

5. Fourier representation of δ(x)
We now seek to establish that

δ(x) = 1
2π ∫

∞

−∞
e ikx dk (4)

where δ(x) is the Dirac delta “function.” First a plausibility argument. If we use Euler’s theo-
rem to express the complex exponential as e ikx = cos kx + i sin kx, then we see immediately
that the imaginary part must vanish because sin kx is an odd function of k and we are in-
tegrating over the in�nite interval. All the cosines peak at the origin and then proceed to
oscillate at di�erent spatial frequencies as we move away. �ese oscillations tend to wipe one
another out at any nonzero value of x, but they all add up at x = 0 to produce an enormous
(in�nite) spike. With only a tiny bit of pixie dust to supply the factor of 1/2π, we can see how
the integral might just produce δ(x).

Of course, whenever you see a delta function you feel an Pavlovian urge to integrate. I
know I do. So consider

I = ∫
x2

x1
( 1

2π ∫
∞

−∞
e ikx dk) dx = 1

2π ∫
∞

−∞
dk∫

x2

x1
e ikx dx
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5. FOURIER REPRESENTATION OF δ(X)

where I have once again blithely interchanged the order of integration. If Eq. (4) holds, then
I = 0 if x1 and x2 don’t bracket 0, and I = 1 if x2 > 0 and x1 < 0. We evaluate I in two steps.
�e �rst integral is child’s play:

∫
x2

x1
e ikx dx = e ikx

ik
∣
x2

x1

= e ikx2

ik
= e ikx2 − e ikx1

ik

Re(k)

Im(k)

R

Figure 2: Contour to evaluate Eq. (5).

Now we have to evaluate integrals of the form

J(x) = ∫
∞

−∞
e ikx

ik
dk (5)

in which the integrand diverges right in the middle of
the path of integration. If we expand the exponential in
a series e ikx = 1+ ikx+ (ikx)2

2! +⋯, we can readily see that
the coe�cient of the a−1 term is just 1/i. Have no fear.
�ere are two possibilities to worry about: x > 0 and
x < 0. If x > 0, then we can create a closed contour on the
complex k plane using a semicircular arc of radius k = R
in the upper half plane, as illustrated in Fig. 2, and take
the limit as R →∞. All along this arc, the imaginary part
of the complex variable k is positive and enormous, so the semicircular integral contributes
nothing in the limit as R →∞. By the residue theorem, then, J(k) is equal to 2πi times the
residue of the single pole at k = 0, except that this pole lies right on the contour of integration.
By the argument leading to Eq. (2), we get half the residue. Hence,

J(x) = 1
i
(πi) = π, x > 0

If x < 0, then we must close in the lower half plane and we now traverse the closed contour
in the negative (clockwise) direction. Now we get minus half the pole, so

J(x) = 1
i
(−πi) = −π, x < 0

Putting this all together, we have

I = 1
2π

[J(x2) − J(x1)] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x1 < 0 < x2

−1 x2 < 0 < x1

0 otherwise

�is con�rms Eq. (4).

Exercise 1 One de�nition of the Fourier transform of a function f (t) (assumed to die o�
appropriately as ∣t∣→∞) is

f̃ (ω) ≡ ∫
∞

−∞
f (t)e iωt dt (6)
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6. LAPLACE TRANSFORMS

Given f̃ (ω), show that the original function f (t) may be recovered by computing the inverse
transform, given by

f (t) = 1
2π ∫

∞

−∞
f̃ (ω)e−iωt dω (7)

Caution: take care not to confuse dummy variables of integration with “real” variables.

6. Laplace Transforms

Some dynamics problems may be solved using Laplace transforms to convert di�erential
equations to algebraic ones. �e Laplace transform of a function g(t) is de�ned by

G (s) ≡ ∫
∞

0
g(t)e−st dt ≡ L{g(t)} (8)

where we require that g(t) = 0 for t < 0. (You can always shi� the origin of time if your
function starts up at some distinct value of t less than 0.) Note that as s gets large, only
the portions of g(t) at small t contribute to G (s). You can readily con�rm that the Laplace
transform of g(t) = e−αt is G (s) = 1

α+s , and that the Laplace transform of g(t) = sin ωt is
G (s) = ω

ω2+s2 . (You’ll need to do two integrations by parts for this one.)
Lots and lots of Laplace transforms are tabulated in books; engineers especially love

them. Typically, they solve a problem by �nding the Laplace transform of the function they
really want and then have to go backwards to �nd that function. One approach is to look in
the book of transforms until you �nd the one that matches your transform and then copy
down the corresponding function that produces this transform. �is is sort of like �guring
out the integral of a function f by taking the derivative of all sorts of functions until you �nd
a derivative that matches f . Eventually, you’d like to learn how to integrate!

So, our problem is, given a function G (s) that is de�ned for s ≥ 0 and which doesn’t blow
up as s →∞, how do we �nd the function g(t) for which G (s) is the Laplace transform?

From the previous section, we know that δ(x) = 1
2π ∫

∞
−∞ e ikx dx. If we could somehow

turn the e−st into a delta function with argument t − t′, then we could pick o� the value of
g(t0). So, let’s multiply G (s) by est′ and integrate:

∫ G (s)est′ ds = ∫ ∫
∞

0
g(t)e−st dt est′ ds = ∫ ∫

∞

0
g(t)e−s(t−t′) dt ds (9)

I’ve been a bit coy about the limits of integration for s. If we want to use the Fourier
representation of the delta function, then we have to change s into is somehow. Suppose we
integrate along the line s = b+ iy, where b is a real constant that puts the line, shown in Fig. 3,
to the right of any poles in G (s). �en we could close the contour using the arc at in�nity
shown in the dotted line without changing the value of the integral, since the est′ ebt′ term
will cause it to vanish for large negative values of s. �en

∫
b+i∞

b−i∞
G (s)est′ ds = ∫

b+i∞

b−i∞ ∫
∞

0
g(t)es(t′−t) dt ds (10)
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6. LAPLACE TRANSFORMS

Re(k)

Im(k)

b

Figure 3: Contour for evaluating the inverse Laplace transform.

Now we blithely interchange the order of integration on the right (acceptable, provided that
g(t) is well behaved at in�nity) to get

∫
b+i∞

b−i∞
G (s)est′ ds = ∫

∞

0
g(t)∫

b+i∞

b−i∞
es(t′−t) ds dt

= ∫
∞

0
g(t)eb(t′−t) [∫

∞

−∞
e iy(t′−t) i d y] dt (11)

�e term in brackets is just 2πiδ(t′ − t), which makes the integral over t straightforward.
We get

∫
b+i∞

b−i∞
G (s)est′ ds = 2πig(t′) (12)

Changing t′ to t and tidying up, we have the Laplace transform inversion formula,

g(t) = 1
2πi ∫

b+i∞

b−i∞
G (s)est ds (13)

where the value of b must be chosen to be greater than the real coordinate of any poles in
G (s). Eq. (13) is sometimes called theBromwich integral. By the residue theorem, therefore,
the inverse transform is just the sum of the residues of G (s)est .

Example 1: Bromwich integral

Given the Laplace transform G (s) = s + a
(s + a)2 + k2 , �nd g(t).
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7. EXERCISES AND PROBLEMS

�e poles of s + a
(s + a)2 + k2 est occur where s + a = ±ik, so let s = −a ± ik + z and

rewrite the integrand in terms of the new variable z:

G (s)est = ±ik + z
(±ik + z)2 + k2 e(±ik−a+z)t = ±ik + z

±2ikz + z2 e(±ik−a+z)t (14)

We can now take the limit as z → 0 and look for the term proportional to z−1; we
get

a±−1 =
1
2

e±ikt−at (15)

Summing the residues, we �nd

g(t) = 1
2

e−at (e ikt + e−ikt) = e−at cos kt (16)

You can con�rm that L{e−at cos kt} is indeed s+a
(s+a)2+k2 .

7. Exercises and Problems

Exercise 2 Show that the Laplace transform of the derivative of a function g(t) is

L{dg
dt

} = sG (s) − g(0) (17)

where G (s) = L{g(t)}. In other words, the Laplace transform converts derivatives to pow-
ers of s.

Exercise 3 �e convolution of two functions is de�ned by

f (t) = ∫
t

0
g1(t − t′)g2(t′) dt′ (18)

Show that L{ f (t)} = G1(s)G2(s).

Exercise 4 Calculate the Laplace transform of sin ωt.
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