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Fluid flowing down an inclined plane commonly exhibits a fingering instability in which the contact
line corrugates. We show that below a critical inclination angle the base state before the instability
is linearly stable. Several recent experiments explore inclination angles below this critical angle, yet
all clearly show the fingering instability. We explain this paradox by showing that regardless of the
long time linear stability of the front, microscopic scale perturbations at the contact line grow on a
transient time scale to a size comparable with the macroscopic structure of the front. This
amplification is sufficient to excite nonlinearities and thus initiate finger formation. The
amplification is a result of the well-known singular dependence of the macroscopic profiles on the
microscopic length scale near the contact line. Implications for other types of forced contact lines
are discussed. ©1997 American Institute of Physics.@S1070-6631~97!01103-3#
om
ce

fin
ng
fe
l

in-
c
ne

te

a
te

ou
nt
-
id
th
Th
te

th
i
m

ns

the
a-
the
e
re-
of
base

ne
ve-
the
hat
rn,
as
sy
ry,
ers
dic-
s

een
wn
he
the
ce
y of

t
itial
th
lin-
ot
tes
the
al
n-
in-
I. INTRODUCTION

Spreading viscous films have applications ranging fr
microchip fabrication to tertiary oil recovery. In the absen
of forces, it is well known that the flow is perfectly stable.1–5

However, as first appreciated by Huppert,6 when a liquid film
is driven by a constant force, the interface breaks into
gers. Since Huppert’s initial experiments on fluid drippi
down an inclined plane, studies have focused on more
tures of the inclined plane7–9 as well as other experimenta
configurations, such as spin coating10,11 and Marangoni
forcing.12,13

The mechanism for the instability involves a subtle
terplay between the fluid far from the front, where surfa
tension is irrelevant, and the fluid near the contact li
where surface tension dominates. In his original work,6 Hup-
pert characterized the flow far from the front. Troianet al.14

and Hocking15 first described the surface tension domina
region; Moriarty, Schwartz, and Tuck16 and Goodwin and
Homsy17 provided more detailed descriptions. Numeric
simulations by Schwartz revealed the fact that surface
sion effects control the instability.18 Troianet al.14 presented
a theoretical mechanism for the instability. They pointed
that the base state before the instability has, near the co
line, a thick ‘‘bump’’ that is responsible for the linear insta
bility. By performing an analysis of the base state for flu
dripping down a vertical wall, they found a finite-waveleng
most unstable mode and corresponding growth rate.
most unstable mode has a wavelength that is approxima
three times the widthW of the bump. Hocking and Miksis
made similar calculations for the stability of a ridge.19 Spaid
and Homsy recently analyzed the mechanism for
instability,20 and demonstrated that the dominant effect
that, under the action of a constant body force, thicker fil
have less resistance than thinner films.

All of the aforementioned experimental configuratio
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have been compared with linear theory. Photographs of
experiment easily yield the finger wavelength while me
surements of the finger length as a function of time give
growth rate.9,13For fluid dripping down an inclined plane, d
Bruyn9 finds qualitative agreement with the theoretical p
dictions. When his data for finger length as a function
time are scaled by the characteristic length scales of the
state proposed by Troianet al.,14 the finger length grows
exponentially in time, although the growth rate is about o
fifth the predicted value. Furthermore, the average wa
length of the patterns is roughly 50 percent smaller than
predicted most unstable mode. Another complication is t
the experiments often show an irregular fingering patte
with the wavelengths of successive fingers differing by
much as 25 percent across the pattern. Frayasse and Hom11

compared data from centrifugal spreading with the theo
with better agreement: both the growth rates of the fing
and the average wavelength agree with theoretical pre
tions quite well. Finally, for thermally forced finger
Brzoska, Brochard-Wyart, and Rondelez13 found good agree-
ment.

We present several reasons for the discrepancy betw
the theoretical predictions and the experiment for flow do
an inclined plane. First, when the plane is inclined to t
vertical there is a component of gravity perpendicular to
incline plane. Our calculations show that this additional for
has significant consequences for the shape and stabilit
the front. Below a critical inclination anglea* , the bump in
the profile completelyvanishes, and the front is linearly
stable. The critical inclination anglea* is above the smalles
values used in de Bruyn’s experiments and also in the in
experiments of Huppert. Thus instability and finger grow
seem to occur in experiments even though the front is
early stable. This additional force stabilizing the front is n
important in centrifugal spreading at the high rotation ra
typically used in experiments, and also is not present in
thermally forced experiments of Brzoska. For centrifug
spreading, there is a critical rotation rate below which ce
trifugal spreading is also linearly stable. Experiments on
to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp
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clined planes show instability even for very small inclinati
angles.

The second important factor is that regardless of whe
the front is linearly stable, there is significanttransient
growth over the typical time of the experiment. The mech
nism for transient growth stems from the singular dep
dence of the base state on the microscopic length scale a
contact line. The amount of transient growth depends
versely on the microscopic scale~typically 1023–1024 times
the macroscopic thickness of the film! at the contact line, so
that perturbations of all wave numbers can grow by a fac
of 1032104 during an experimental time scale. Transie
amplification of small perturbations near the contact line
curs both above and below the critical inclination angle
linear stability.

A final feature is that both the linear instability at larg
inclination angles and the transient growth modulate
thickness of the front without corrugating the contact line.
order to cause finger growth, nonlinearities are necessa21

this requires that the time scale of nonlinear effects is l
than the time scale for modulating the thickness of the fro
Applying this criterion leads to the result that there is asec-
ondcritical inclination angle depending on the contact an
of the fluid below which the profile is both linearly stab
and the nonlinear finger formation mechanism does not
cur on a time scale that is fast enough to amplify transi
growth. In this regime, no fingering occurs.

The organization of this paper is as follows. Section
reviews the dynamic equations describing fluid flow down
inclined plane~following Troianet al.14! and shows how the
inclination angle modifies the shape of these traveling wav
Section III considers the linear stability analysis of the
traveling wave solutions as a function of inclination ang
As expected, when the bump in the profile vanishes,
profiles are linearly stable. Section IV discusses trans
growth. Section V reviews conclusions and predictions.

II. MATHEMATICAL FORMULATION

We study the evolution of fluid, released at the top of
inclined plane, as it drips down the incline. The fluid/a
solid contact line is initially straight, but may form fingers
the interface evolves. First we discuss the lubrication
proximation for such a setup, including the different regio
of interest and their length and time scales. Then we disc
the particular contact line model chosen here, the ‘‘travel
wave solutions’’ in this model and a comparison of the p
rameters in the model with actual experiments.

A. The lubrication approximation

The standard mathematical formulation for such wett
flows is the lubrication approximation:22 by depth averaging
the velocity field of the liquid over the thickness of the film
the Stokes equations reduce to a more tractable partial
ferential equation for the thickness of the film.

If the film thickness ish(x,y,t), the velocityV(x,t) is

3hV~x,y,t !52h2“p1rgsin~a!h2x, ~1!

whereh is the viscosity,p the internal pressure,r the fluid
density, andg the gravitational acceleration. The pressure
Phys. Fluids, Vol. 9, No. 3, March 1997
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p~x,y,t !52g¹2h1rgcos~a!h, ~2!

whereg is the liquid surface tension. Conservation of ma
then gives an evolution equation for the thin film height,

3h
dh

dt
1“•~gh3“¹2h2rgcos~a!h3“h!

1rgsin~a!~h3!x50. ~3!

After the flow begins, the height profile develops tw
regions~see Fig. 1!. The outer region, far from the contact
line, is dominated by the component of gravity,rgsina, par-
allel to the surface. The solution in this region can be d
scribed by a similarity solution of Huppert,6

h~x,t !5A hx

rgsinat
. ~4!

Conservation of mass implies that the length of this reg
increases asxN;t1/3 and the thickness decreases
HN;t21/3.

Near xN , the edge of the outer region, the profile
smoothed by surface tension. Troianet al.14 proposed a
quasi-steady approximation in which the outer solution p
vides boundary conditions for the flow in thisinner region.
Troianet al.14 and Hocking15 use these boundary condition
to set the scale for the flow near the contact line. The app
priate scalings are

h5h̄HN ,

~x,y!5~ x̄l ,ȳl !, ~5!

t5 t̄~ l /U !.

Here, l 5HN /(3Ca)
1/3, where Ca5mU/g is the capillary

number. When expressed in terms of these units, the he
and width of the base profile remain nearly constant in tim
With these rescalings~dropping the bars!, Eq. ~3! becomes

ht1„h3)x1“•~h3““2h2cot~a!~3Ca!1/3h3“h…50.
~6!

In the forthcoming analysis, we defineD(a)5cot(a)
3(3Ca)1/3. The importance of this quantity was noted b
Goodwin and Homsy17 who considered the distinguishe
limit Ca→0, D→1.

FIG. 1. Schematic diagram of the problem.
531A. L. Bertozzi and M. P. Brenner
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It is useful to estimate the capillary number of the flo
as a function of the inclination angle. The flow field aw
from the contact line determines the characteristic velo
scale. If L is the characteristic span-wise variation of t
film, then the characteristic time scalet of the flow in the
outer region is

t5
3hL

rgsin~a!HN
2 ,

so that the velocityU;L/t, and the capillary number is
approximately

Ca5
hU

g
'

rgsin~a!HN
2

3g
5
tan~a!

3 S HN

l cap
D 2, ~7!

wherel cap5Ag/(rgcos(a)) is the capillary length. Note tha
the capillary number is weakly time dependent due to
time dependence ofHN .

B. Contact line model

The analysis in this paper addresses the case of c
pletely wetting fluids. Even in this case, the boundary c
dition at the contact line is a subject of debate.23,24,2 In this
paper we use the model proposed by Troianet al.14 To avoid
confusion we briefly justify the model and point out its lim
tations. For completely wetting fluids~with zero equilibrium
contact angle!, the only dependence of the profile far fro
the contact line on the microscopic physics near the con
line is a logarithmic dependence on the microscopic leng
scale.25,26,2 No other microscopic parameter appears in
outer flow field. This result was first established by Dussa26

and later discussed through general scaling arguments b
Gennes.2 The logarithmic dependence on the microsco
scale arises in relating the velocityU of the front to the
macroscopic contact angleu, through Tanner’s law

gu25hU
~ log~1/b!!

u
, ~8!

whereb is the ratio of the microscopic to macroscopic leng
scales. This formula represents the balance between su
energy and energy dissipation in a moving wedge. The lo
rithm arises from the divergence of the energy dissipation
the contact line.26

Realistically modeling the contact line is extremely d
ficult. The fact that the macroscopic flow depends
contact-line physics only through Eq.~8! allows an enor-
mous simplification: it is legitimate to useanymodel of the
microscopic physics near the contact line as long as it le
to the macroscopic spreading law Eq.~8!. The simplest such
model, proposed by Troianet al. in Ref. 14, gives the micro-
scopic physics as a thin film of thicknessb preceding the
front ~see Fig. 2!. Although this thin film model does no
accurately reproduce the actual microscopic physics nea
contact line, it introduces the microscopic scaleb into the
macroscopic flow field in the required manner. The len
scaleb does have physical significance, and represents
characteristic scale of the microscopic physics in a partic
experiment. For spreading on a rough surface, this len
532 Phys. Fluids, Vol. 9, No. 3, March 1997
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scale is just the scale of surface roughness. For spreadin
smooth surfaces,b would be set by van der Waals intera
tions.

C. Traveling wave solutions

The base state before the instability14,15 is a traveling
wave solutionh(x,y,t)5h0(x2Ut) of ~6!. The function
h0(x) satisfies

2Uh01~h0
3h0xxx2D~a!h0

3h0x!1h0
35d, ~9!

whered is a constant of integration, and

D~a!5cot~a!~3Ca!1/35S cot~a!HN

l cap
D 2/3. ~10!

Matching the front onto the rest of the solution specifies
integration constantd and the velocityU of the traveling
wave.16 As x→2`, the front matches ontoh0→1. As
x→`, the front must match onto the contact line. These t
matching conditions fix bothU andd to be

U5
12b3

12b
, d52b

12b2

12b
,

which uniquely fix the traveling wave solution.
Given b andD, Eq. ~9! can be solved for the shape o

this solution. The first graph in Fig. 3 shows for differentb
the profiles corresponding toD50, in agreement with the
results of Troianet al.14 These profiles all have a distinc
bump at the contact line. As mentioned above, the len
scale of the linear instability is given by the characteris
width of this bump. The second graph in Fig. 3 shows p
files whenD52.5. Here the situation is different: For a
profiles, the size of the bump is substantially diminished.
b50.1, it has essentially disappeared. IncreasingD slightly
higher further diminishes the size of the bump. As the l
graph~lower left! in Fig. 3 shows, forD55, the bump for
b50.01 has completely disappeared. A slight bump rema
for b50.001.

The height of the bump is a strong function ofD and
b. Since the bump height is the crucial parameter for de
mining whether the profile is stable or unstable, we show
Fig. 4 the height of the bump as a function of these para
eters.

FIG. 2. Schematic diagram of the model.
A. L. Bertozzi and M. P. Brenner

to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



ha

a

e.

o

an
gh

d
a
th
g
p
n
n

fi

d

-

rs.
nts

er-

rre-

in
the

he

h,

mp

s

For each value ofb there is a critical value ofD for
which the bump completely disappears. We verify below t
when the bump disappears, the front is linearly stable.

The traveling wave solutions have a characteristic sc
W in the x direction over which the thickness of the film
decays. The scaleW depends strongly the inclination angl
For a near 90 degrees,W is of order l , independent ofa
when expressed in the units of Eq.~5!. When the gravita-
tional flattening term is important the characteristic width
the profile isnot given by the scalings of Eq.~5!, but instead
by

W;D~a!l 5HNcot~a!.

At high D the decay of the front is much more gradual th
at D50. However, it is important to note that close enou
to the edge there isalwaysa region of sizel where surface
tension is important.

By solving the full Stokes equations, Goodwin an
Homsy17 made extensive calculations of the profiles at sm
inclination angles. Their calculations demonstrate that
size of the bump decreases with decreasing inclination an
They also discuss the dependence of the size of the bum
the contact angle boundary condition. The latter depende
is outside the focus of this paper, since we consider o
completely wetting fluids.

D. Comparison with experiments

Given the strong dependence of the shape of the pro
on the value ofD, it is of interest to know the value ofD in
the experiments. Combining formulas~7! and ~10! shows
that at small angles,D(a);a22/3. The fact thatD(a) be-
comes large at low inclination angles was emphasized by
Bruyn.9 By measuring the thicknessHN of the film before

FIG. 3. Profiles forb50.1, 0.01, and 0.001. The maximum thickness of t
bump is a logarithmic function ofb. The first graph shows the caseD50,
the secondD52.5 and the thirdD55. Note that in each successive grap
the heights of the bumps are substantially diminished. For the caseD55
there is no bump in theb50.1 andb50.01 profiles. Forb50.001 there is a
very slight bump.
Phys. Fluids, Vol. 9, No. 3, March 1997
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the instability sets in, he deducedD and showed thatD
diverges at low inclination angles;27 even at the highest in
clination anglesD is still order one.

For each value ofb, there is a critical value ofD in ~9!
above which the bump in the profile completely disappea
Using the parameters given for de Bruyn’s experime
(g519.4 dyn/cm,h50.525 g/cm/s andHN50.3 cm! yields
D(a)51.64(sin(a))1/3cot(a). This function is plotted in Fig.
5.

A typical experimental surface has microscopic imp
fections on the scale ofmm, suggestingb;102321024. The
calculations shown in Fig. 4 indicate thatD must be at least
in the range 5–8 in order to suppress the bump. The co
sponding critical angle is arounda*' 5–10 degrees. The
inclination angles explored in de Bruyn’s experiments are
the range 2–20 degrees, so at the smallest angles in

FIG. 4. Maximum height of the profiles as a function ofD for different
values ofb. When the maximum height is near 1, there is no longer a bu
in the profile.

FIG. 5. D(a) as a function ofa for the parameter values of de Bruyn’
experiments. Note thatD diverges asa22/3 at small angles.
533A. L. Bertozzi and M. P. Brenner
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FIG. 6. The growth rateb(q) computed from the long time behavior of solutions of the linear PDE~12! with D(a)50 ~top! andD(a)55 ~bottom!.
th
is

i
on

ia
fo
m
at
n
or
ep
on
t a
v

v-

of

s

the

the
ga-
he

to

ce

re-
tely

e

by
ion
ap-

the
the
ri-
uld
experiment the initial profile should not have a bump. For
original experiments of Huppert, the inclination angle
around 12 degrees, indicating a slight bump.

In an actual experimentD is time dependent; in the
above analysis, the quasi-steady approximation assumes
constant. We discuss the consequences of this assumpti
the end of Sec. III.

III. LINEAR STABILITY ANALYSIS

The traditional approach to hydrodynamic stability is v
a linearization of the equation about a steady solution
lowed by an eigenvalue analysis of the linearized proble
In this section we compute the largest eigenvalue associ
with the linearization of~6! about the traveling wave solutio
h0 to ~9! and discuss the role of the gravitational force n
mal to the inclined plane. We show that there is a discr
ancy between experimental results and stability predicti
via eigenvalue analysis. In the next section we show tha
eigenvalue analysis does not accurately capture the rele
dynamics of the linearization.

Following Troianet al.,14 we use a reference frame tra
eling with the speed of the traveling waveU511b1b2.
Consider a perturbation,eg(x,y,t), to the fronth0. We think
of g asO(1) ande!1. Later we discuss the relevant size
e for physical experiments. Pluggingh5h01eg(x,y,t) into
~6! and saving only those terms that areO(e), to first order
in e the equation for the perturbation profileg is

gt1“•~3h0
2g~“¹2h02D~a!“h0!!1“•~h0

3~“¹2g

2D~a!“g))13~h0
2g!x2Ugx50. ~11!

The eigenfunctions and eigenvalues of solutions to~11!
determine the classical linear stability. Since the steady
lution, h0, does not depend on the transverse variabley, Eq.
~11! can be Fourier transformed iny

g~x,q! t1]x~3h0
2g~]x

3h02D~a!]xh0!!1]x~h0
3~]x

3g

2D~a!]xg))2q2h0
3gxx1D~a!q2h0

3g

2q2]x~h0
3]xg!1q4h0

3g13~h0
2g!x2Ugx50. ~12!
534 Phys. Fluids, Vol. 9, No. 3, March 1997
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Note that ifh0 were constant, Eq.~12! would have no un-
stable modes. Thus the linear instability results from
complex structure ofh0.

Troian et al.14 calculated the growth rate for smallq: If
g(x,q)5ebt w(x,q), the spatial dependencew(x)'h0x for
sufficiently long wavelength disturbances~sinceh0x is the
marginal translation mode!. Then to leading order inq2, the
growth rate is

b~q!5
q2

12bE2`

`

~h021!~h02b!~h0111b!dx. ~13!

This equation holds even whenD is nonzero.
The most important feature of Eq.~13! is that if h0,1,

thenb(q),0 at long wavelengths. Forb to be positive,h0
must be greater than one in a large enough region that
positive portion of the above integral cancels out the ne
tive portion. Thus, for the profile to be linearly unstable t
bump must have a finite size.

Now we determine the eigenvaluesb(q) as a function of
q by solving the full linear PDE~12! numerically on a suit-
ably large domain. For eachq, we start with a generic initial
condition, examine the long time behavior of the solutions
Eq. ~12!, and extract the exponential growth~decay! rate.
The numerical scheme is a standard implicit finite-differen
scheme~see e.g., Ref. 28!; the only complication is that for
small b, it is necessary to use a nonuniform mesh with
finement at the apparent contact line in order to comple
resolve the unperturbed profileh0. Figure 6 showsb(q) for
several small values ofb for bothD(a)50 andD(a)55.

The growth rate curve shown in Fig. 6 forD50 agrees
with the computations of Troianet al.14 However, a moder-
ate value ofD(a) modifies the growth rate considerably; th
profile is linearly stable whenb is larger than a critical value
b* (a) depending on the inclination angle. As suggested
both intuitive reasoning and the long wavelength calculat
discussed above, linear stability corresponds to the dis
pearance of the bump in the profiles.

The linear growth rates in Fig. 6 suggest a paradox:
bump responsible for the linear instability disappears at
small inclination angles of the experiment, but the expe
ment still shows that the interface destabilizes. What co
A. L. Bertozzi and M. P. Brenner
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be the reason for this discrepancy? We describe below t
different possibilities, the last of which we believe to be t
most relevant. We elaborate on this point in subsequent
tions.

One scenario29,18 uses the breakdown of the quasi-sta
approximation to explain the change in stability: at ea
timesD may be of significant size, however the thinning
the film described in~4! causesD to decrease over time. In
this picture the instability occurs as soon asD is small
enough so that the profile is linearly unstable. At small inc
nation angles, the conditionD;1 is equivalent to the film
thickness satisfyingHN;al cap . The capillary length is
typically a few millimeters; thus whena53 degrees,~the
smallest angle in de Bruyn’s experiments!, the film thickness
would have to be smaller than'0.1 mm forD to be in the
unstable regime. The measured thickness in de Bruy
experiments,9 are 0.3 cm, about a factor of ten larger th
this threshold. Thus, the hypothesis thatD decreases until the
film becomes linearly unstable seems insufficient to exp
the instability in de Bruyn’s experiments; however, a diffe
ent experimental setup might attainD;1 at very low incli-
nation angles by using extremely thin films.

Two other scenarios are motivated by similar proble
arising in the transition to turbulence in shear flows. In t
situation, an instability is observed at a Reynolds numb
where the base state is linearly stable. One explanation,
to Landau,30 describes the instability as weakly nonline
and represents a finite amplitude instability to a nearby n
linear state. Another explanation involves transient grow
in solutions to the linearized equations, that triggers the n
linear instability.31–37

Below, we demonstrate that there is in fact significa
transient growth in Eq.~12! due to the singular dependenc
of the solution on the microscopic length scaleb at the con-
tact line. The transient growth occursregardlessof whether
there is bump in the profile. We argue that this last scen
is the most natural to explain the discrepancy between
growth rates in Fig. 6 and experiments.

IV. TRANSIENT GROWTH

In the previous section we performed a classical hyd
dynamic stability analysis, namely linearization of the equ
tion and computation of most unstable eigenvalues.
cently, it has been pointed out that for certain problems
approach can give results that do not correlate with exp
ments, not because of the failure of the linearization,
because of the failure of the eigenvalue analysis.31–36Indeed,
the eigenvalues predict the long time state of the lineari
system. And, when the associated eigenfunctions are al
thogonal the eigenvalues accurately capture the short
effects as well. However, in the case of a strongly no
normal system, in which eigenfunctions are closely align
transient effects can occur that mask, on an intermediate
scale, the behavior predicted by the eigenvalues. The lin
ized equation accurately approximates the evolution of a
turbation of the steady state as long as it remains smal
the case of nonnormal operators, a solution to the linear
equation may grow by orders of magnitude on a trans
time scale, even though all the underlying eigenvalues p
Phys. Fluids, Vol. 9, No. 3, March 1997
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dict stability. This kind of growth may cause an initiall
small perturbation to reach an order one size on a trans
time scale, exciting nonlinearities and causing an observa
instability.

The goal of this section is to illustrate that regardless
the size of the bump in the fronth0 ~hence regardless of th
eigenvalues of the linearization!, solutions of~12! grow by a
factor of 1/b on a transient timescale, that is by a factor th
scales inversely with the microscopic length scale. Since
experimentsb typically is of order 102321024, this effect is
considerable. It is sufficient to explain instability where e
genvalue analysis fails, if it causes a perturbation to grow
sizeO(1), that is if the initial perturbation sizee satisfies
e5O(b) whereb!1. This situation is in fact expected, e.g
in the case of surface roughness, the size of the rough
determines both the microscopic scale for the model and
size of the noise. We also note that, as shown in Ref.
transient growth of a smaller magnitude than the inverse
the characteristic size of the noise can sometimes still u
mately lead toO(1) effects via a ‘‘bootstrapping’’ mecha
nism involving the nonlinearity.

Before presenting the numerical results showing tr
sient amplification of solutions to the linearized equati
~12!, we present a heuristic argument, based on the shap
the capillary profile, for why we might expect a 1/b scaling
for the amplification factor.

A. Contact lines are amplifiers

We give a general argument that demonstrates that c
tact lines are amplifiers: namely, small perturbations to
interface in the vicinity of a contact line cause much larg
perturbations to the outer flow field.

Consider a perturbation of sizee in the microscopic re-
gion near the contact line. The response of the outer fl
field to this perturbation can be considered within our si
plified model of the contact line, by studying a perturbati
of sizee to the thin film region ahead of the front. The maj
effect of this perturbation will be to change the local micr
scopic length scale fromb→b1e. In an experiment,e will
be on the order ofb, since it typically represents fluctuation
in the microstructure. As argued above in section II, the le
ing order dependence of the outer flow field on the mic
scopic length scale is exactly captured by the simplified c
tact line model; hence, the response of the outer flow field
the perturbation will be captured by our model. Figure
shows a sketch of such a perturbation to the model.

The crucial point in considering how this perturbatio
effects the outer flow field is that the maximum height of t
thick film depends in a singular way on microscopic sca
This logarithmic dependence is demonstrated in Fig. 3:
profile away from the contact line~e.g., the maximum thick-
ness of the film! is a logarithmic function ofb. The reason
for this logarithmic dependence was given by Dussan
Davis,25 Dussan,26 and de Gennes,2 who showed that it ge-
nerically arises from matching the behavior near the con
line ~where h;x(log(x/b))1/3) to the thick film. Placing a
perturbation of sizee on the thin film changes the fron
height from b→b1e. This causes the outer solution~for
example, the maximum height of the film! to become
535A. L. Bertozzi and M. P. Brenner
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hmax~b1e!; f S logS 1

b~11e/b! D D' f S logS 1bD D
2 f 8S logS 1bD D e

b
;hmax~b!1O~e/b!.

Thus, the contact lineamplifiesthe perturbation by a factor

Dhmax
e

;
1

b
.

For experiments withb51023–1024, growth by a factor of
103–104 can occur. Since we expect the scale of pertur
tions to be on the order of size of the microstructure~that is
the size ofb), this means that they will amplify to caus
order one changes in the front. The time scale of this am
fication is the amount of time it takes for the traveling wa
to pass over the perturbation. Note that this same argum
holds if the perturbation at the contact line varies with wa
length much larger thanW.

Now we verify the existence of transient growth
Eq. ~12! by explicit computation. We considerb50.1
and D(a)50, with an initial perturbation g
5 G(y) w(x)sin(x/3), wherew is a cutoff function localized
around the downslope of the front and contact line. We co
pute the solution of the linearized Eq.~12! for different val-
ues ofq. Figure 8 depicts the ratio

R~ t !5maxxug~x,t !u/maxxug~x,0!u

FIG. 7. Sketch of a type of perturbation to the profile that can cause t
sient growth.

FIG. 8. Transient growth of perturbations forD55 andb51023. Shown is
R(t)5ugumax(t)/ugumax(0) for q50,0.12,0.24,0.36,0.48.
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as t varies. The data shown haveD55 andb51023. We
show several different values ofq. Note the huge amplifica-
tion of the solution for early times. Mathematically the tra
sient growth results from the fact that the linear operator
Eq. ~11! is not self-adjoint.34 One can observe this kind o
behavior in other hydrodynamic systems, see e.g., Ref. 3

A useful way to focus on the early time transient is
factor out the exponential behavior ast→`. Therefore, for
eachq, it is useful to examineR(t) divided byeb(q)t, where
b(q) is the corresponding eigenvalue~as plotted on the right
in Fig. 6!. This quantity is shown in Fig. 9 forq50 and
0.6. For linear systems with self-adjoint operators, this ra
decays over time and approaches a constant ast→`. How-
ever, for non-self-adjoint systems, this ratio could grow
orders of magnitude before saturating. Here there is amp
cation by a factor of 200 forq50 and 800 forq50.6.

Figure 10 shows how transient growth alone can aff
the front. We consider the caseD55 andb50.01, for which
there is no bump in the profile and hence all growth ra
b(q)<0. Nevertheless, transient growth causes pertur
tions to grow by as much as a factor of 25 on an order o
time scale. Consider a perturbation of sizee50.01;b. The
figure shows the transient growth of a perturbation w
wave numberq50.12. The top figure shows a contour pl
of the front plus perturbation att50, the bottom graph
shows the affect of transient growth alone att54, when the
perturbation has grown to about 0.25. Such amplificatio
are enough to incite nonlinear effects that can produce fin
formation.21 To verify that the amount of amplification var
ies inversely with b, we show in Fig. 11 the amplification
factor as a function ofb for D50. The simulations use the
same initial perturbation with base profiles corresponding
different values of b. The data depict the
maxtmaxxug(x,t)u/maxxg(x,0) for the q50 mode. The num-
bers indicate that the transient growth is inversely prop
tional to b, in accordance with the qualitative argumen
above. The same scaling is seen upon choosing different
ues ofD andq.

n-

FIG. 9. Transient growth of perturbations forD55 andb51023. Shown is
R(t)e2bt for q50 andq50.6.
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time
FIG. 10. Contour plot of the thickness profileh(x,y,t) atD55,b50.01 when allb(q)<0. The figure shows the corrugation of the front by a disturbance
wave numberq50.12. In both figures, the color white denotes the thick film (h51), and the color black denotes the thin film region (h50.01). The plot on
the top shows a small disturbance placed on the front at timet50. The plot on the bottom shows the linear transient growth of this disturbance at
t54; the maximum of the disturbance has grown by a factor of 25. Such a transient amplification is sufficient to excite nonlinear finger growth.
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We emphasize that for experiments amplification of
der b21 is precisely what is needed to guarantee instabi
for spreading on a rough surface. In reality,b is a local
quantity representing the microscopic length scale at a g
point. On a rough surfaceb fluctuatesas a function of posi-
tion. The characteristic amplitude of the fluctuations is a
of order b. The surface roughness therefore plays the d
role of both setting the microscopic length scaleb andpro-
viding a natural noise source, with perturbations of orderb.
Thus, amplification factors of sizeb21 suffice to amplify
these disturbances to be order 1, thereby exciting nonline
ties. A spreading drop on a horizontal surface also exp
ences amplification of fluctuations on the microscopic sc
however, in this situation there are no nonlinear convec
instabilities.

FIG. 11. Transient amplification as a function ofb. The dotted line repre-
sents the predictionb21.
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B. Experimental consequences

In order for transient modulations of the front of the typ
shown in Fig. 10 to evolve into fingers, nonlinear effec
must cause these corrugations to grow. The predomin
nonlinear effect21,20 is the gravitational forcing in the direc
tion parallel to the inclined plane, given by thergsin(a)
3(h3)x term in Eq.~3!. This force causes thicker regions
be convected faster than thin regions, leading to fingers.

The determining factor for finger formation is the tim
scale of the nonlinear effects compared to the time scale
the linear corrugation~either through transients or moda
growth!. The latter time scale is

t trans5
L

U front
,

whereL is a characteristic length of the front andU front is the
front velocity.

The time scale for the nonlinear effect follows direct
from the convective term in Eq.~3!, rgsin(a)(h3)x , as

tnonlinear5
hL

rgsin~a!h0
2 ,

whereh0 is the characteristic height of the front. When th
incline is nearly verticala'90°, thenL5W andh05HN as
defined above. In this case, the nonlinear time scale is
order the transient time scale since all time scales are of
same order in Eq.~6!.

WhenD is large, the situation is more subtle: The tra
sient growth occurs in the region away from the contact l
whereh;x(log(x/b))1/3. At largeD this regime ends a dis
tance of orderl cap5Ag/(rgcos(a)) away from the contact
line. Thus, the length scaleL;l cap. The characteristic
heighth0;ul cap, whereu is the macroscopic contact angl

In order for the nonlinearities to initiate instabilities, it
necessary thatt trans.tnonlinear. In theD→` limit, the above
537A. L. Bertozzi and M. P. Brenner
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estimates implyU front,gu2tan(a)/h. The velocity of the
front is given by Tanner’s law~8!. The condition for an
instability is therefore

u,tana log~1/b!'a log~1/b! as D→`. ~14!

In order for the fingers to form at very low inclinatio
angles, the macroscopic contact angle must besmallerthan a
constant multiple of the inclination angle. Therefore, there
a lower critical inclination angle~depending on the drop
shape! below which the spreading is perfectly stable: t
nonlinearities are insufficient to form fingers from the tra
sient modulations of the front. On the other hand, as long
the macroscopic angle is above this lower critical angle,
gers will form.

V. CONCLUSIONS

This paper revisits the fingering instability of fluid drip
ping down an inclined plane, first discussed by Huppe6

The first part of the paper shows that the fingering instabi
sometimes happens in experiments even when the base
file is linearly stable. There is a critical inclination ang
a* below which there is linear stability.

We present a solution to this paradox by pointing o
that even when the profile is linearly stable, there is alw
significant transient growth in which small perturbations n
the contact line can grow by a factor of 103–104. The tran-
sient growth is a result of the singular dependence of
outer flow on the microscopic scale at the contact line.
example, as the fluid flows across a rough surface, fluc
tions in the microscopic scale translate into large fluctuati
in the outer flow. This transient growth triggers nonlinea
ties that result in a fingering instability. The wavelength
the instability is set by the widthW of the steady profile. At
low inclination angles, this width is significantly larger tha
for vertical walls. We also reemphasize that regardless
whether the angle is above or below the critical angle
linear instability, transient growth always occurs with amp
fication inversely proportional to the microscopic leng
scale at the contact line. There is a second critical inclina
angle below which the nonlinearities are not strong eno
to trigger finger formation from the transients. Below th
inclination angle~which depends on the macroscopic cont
angle of the fluid! no fingering occurs.

At inclination angles where the front is linearly stab
but fingering still occurs, transient growth causes corru
tions of the front. Experiments of de Bruyn clearly show th
after an initial transient time period~roughly t525 in dimen-
sionless units! finger growth actually becomes exponential
time.9 This exponential growth is due to anonlineareffect,
explained through a simple geometric argument in Ref. 2

Analogues of the critical inclination angle can be e
tended to other coating processes, such as fluid driven
centrifugal forcing. The parameter range explored in p
lished centrifugal experiments is outside the range where
analysis predicts linear stability with transient growth. Ho
ever, repeating the same arguments as above shows
538 Phys. Fluids, Vol. 9, No. 3, March 1997
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when the rotation rate is small enough that the ‘‘gravitatio
flattening’’ term is the same order of magnitude as the c
trifugal force, stabilization of the profile results. The chara
teristic rotation rate for this stable regime isAgh0 /R0

2, where
R0 is the radial extent of the drop,h0 is the characteristic
height, andg is the gravitational acceleration. For typic
experimental parameters, the critical frequency is of or
1 Hz, which has not been systematically explored. Me
Joanny, and Fauve10 note, however, that when the solid su
strate is coated with a thick enough film of liquid, the inst
bility is suppressed.

Finally, contact line amplification suggests a natural e
planation for irregularity observed in fingering, in whic
wavelengths of successive fingers vary by as much as
percent. This mechanism operates with comparable stre
for all wavelengths near the characteristic widthW of the
profile. For a transient time~of order the experimental time
scale! perturbations with wavelength larger thanW all am-
plify at similar rates. Nonlinearities then dictate the wav
length distribution of the experiments. This idea can
tested experimentally: Varyingb ~the ratio of the outer scale
to the inner one! changes the importance of transient effec
Preliminary experiments by Cazabat show for thermal fo
ing ~where a linear instability exists! the distribution of
wavelengths broadens asb decreases.38 For the inclined
plane, the distribution of wavelengths should beco
broader at small inclination angles: this trend has been no
in experiments of Silvi and Dussan,7 and is also apparent in
de Bruyn’s data.

The most vexing theoretical problem remaining is to p
dict the distribution of finger wavelengths as a function
b and the inclination angle. In experiments, the microsco
length scaleb is not constant, but fluctuates as a function
position:b(x,y)5b̄1h(x,y), whereb̄ is the average micro-
scopic scale andh is a Gaussian noise source. For a partic
lar noise source, what is the distribution of finger wav
lengths? For industrial applications, it would be interesting
know whether a functionb(x,y) exists for which the finger-
ing instability is actuallysuppressed. In such a situation, the
surface could be ‘‘primed’’ to suppress instabilities in
driven coating process.
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