Linear stability and transient growth in driven contact lines
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Fluid flowing down an inclined plane commonly exhibits a fingering instability in which the contact
line corrugates. We show that below a critical inclination angle the base state before the instability
is linearly stable. Several recent experiments explore inclination angles below this critical angle, yet
all clearly show the fingering instability. We explain this paradox by showing that regardless of the
long time linear stability of the front, microscopic scale perturbations at the contact line grow on a
transient time scale to a size comparable with the macroscopic structure of the front. This
amplification is sufficient to excite nonlinearities and thus initiate finger formation. The
amplification is a result of the well-known singular dependence of the macroscopic profiles on the
microscopic length scale near the contact line. Implications for other types of forced contact lines
are discussed. €997 American Institute of Physid$1070-663197)01103-3

I. INTRODUCTION have been compared with linear theory. Photographs of the
experiment easily yield the finger wavelength while mea-
Spreading viscous films have applications ranging fromsurements of the finger length as a function of time give the
microchip fabrication to tertiary oil recovery. In the absencegrowth rate’*®For fluid dripping down an inclined plane, de
of forces, it is well known that the flow is perfectly stablé.  Bruyr® finds qualitative agreement with the theoretical pre-
However, as first appreciated by Huppwthen a liquid film  dictions. When his data for finger length as a function of
is driven by a constant force, the interface breaks into fintime are scaled by the characteristic length scales of the base
gers. Since Huppert's initial experiments on fluid drippingstate proposed by Troiast al,'* the finger length grows
down an inclined plane, studies have focused on more feaxponentially in time, although the growth rate is about one
tures of the inclined plarfe® as well as other experimental fifth the predicted value. Furthermore, the average wave-
configurations, such as spin coatfi'g" and Marangoni length of the patterns is roughly 50 percent smaller than the
forcing !> predicted most unstable mode. Another complication is that
The mechanism for the instability involves a subtle in-the experiments often show an irregular fingering pattern,
terplay between the fluid far from the front, where surfacewith the wavelengths of successive fingers differing by as
tension is irrelevant, and the fluid near the contact linemuch as 25 percent across the pattern. Frayasse and Homsy
where surface tension dominates. In his original wokyp-  compared data from centrifugal spreading with the theory,
pert characterized the flow far from the front. Troianal*  with better agreement: both the growth rates of the fingers
and Hocking?® first described the surface tension dominatedand the average wavelength agree with theoretical predic-
region; Moriarty, Schwartz, and Tutkand Goodwin and tions quite well. Finally, for thermally forced fingers
Homsy"" provided more detailed descriptions. Numerical Brzoska, Brochard-Wyart, and Rondéiéfound good agree-
simulations by Schwartz revealed the fact that surface tenment.
sion effects control the instabilit}f. Troianet al** presented We present several reasons for the discrepancy between
a theoretical mechanism for the instability. They pointed outhe theoretical predictions and the experiment for flow down
that the base state before the instability has, near the contagh inclined plane. First, when the plane is inclined to the
line, a thick “bump” that is responsible for the linear insta- vertical there is a component of gravity perpendicular to the
bility. By performing an analysis of the base state for fluidincline plane. Our calculations show that this additional force
dripping down a vertical wall, they found a finite-wavelength has significant consequences for the shape and stability of
most unstable mode and corresponding growth rate. Thghe front. Below a critical inclination angle*, the bump in
most unstable mode has a wavelength that is approximatelfie profile completelyvanishes and the front is linearly
three times the widthW of the bump. Hocking and Miksis stable. The critical inclination anglke* is above the smallest
made similar calculations for the stability of a ridleSpaid  values used in de Bruyn’s experiments and also in the initial
and Homsy recently analyzed the mechanism for thexperiments of Huppert. Thus instability and finger growth
instability*® and demonstrated that the dominant effect isseem to occur in experiments even though the front is lin-
that, under the action of a constant body force, thicker filmssarly stable. This additional force stabilizing the front is not
have less resistance than thinner films. important in centrifugal spreading at the high rotation rates
All of the aforementioned experimental configurationstypically used in experiments, and also is not present in the
thermally forced experiments of Brzoska. For centrifugal
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clined planes show instability even for very small inclination
angles. outer region
The second important factor is that regardless of whether
the front is linearly stable, there is significatransient
growth over the typical time of the experiment. The mecha-
nism for transient growth stems from the singular depen-
dence of the base state on the microscopic length scale at the
contact line. The amount of transient growth depends in-
versely on the microscopic scaligpically 10 3-10 * times
the macroscopic thickness of the fjlmt the contact line, so
that perturbations of all wave numbers can grow by a factor
of 10°—10* during an experimental time scale. Transient
amplification of small perturbations near the contact line oc-

curs both above and below the critical inclination angle for
linear stability. FIG. 1. Schematic diagram of the problem.

inner region

A final feature is that both the linear instability at large
inclination angles and the transient growth modulate the
thickness of the front without corrugating the contact line. In p(x,y,t)=—yV?h+pgcog a)h, 2

order to cause finger growth, nonlinearities are neces3ary; : - . .
where v is the liquid surface tension. Conservation of mass

this requires that the time scale of nonlinear effects is lesﬁwen ives an evolution equation for the thin film heiaht
than the time scale for modulating the thickness of the front. 9 q gnt,

Applying this criterion leads to the result that there isea- dh 302 3

ond critical inclination angle depending on the contact angle377a+V -(¥h°VV*h—pgcog a)h°Vh)

of the fluid below which the profile is both linearly stable

and the nonlinear finger formation mechanism does not oc-  +pgsin(a)(h®),=0. ()
cur on a time scale that is fast enough to amplify transient  after the flow begins, the height profile develops two
growth. In this regime, no fingering occurs. regions(see Fig. 1 The outer region far from the contact

The organization of this paper is as follows. Section lljine, s dominated by the component of gravipgsina, par-

reviews the dynamic equations describing fluid flow down ang|le| to the surface. The solution in this region can be de-
inclined plane(following Troianet al*) and shows how the  scribed by a similarity solution of Huppet,

inclination angle modifies the shape of these traveling waves.

Section Il considers the linear stability analysis of these h(x,t)= [ X @
traveling wave solutions as a function of inclination angle. ' pgsinat’

As expected, when the bump in the profile vanishes, th
profiles are linearly stable. Section IV discusses transie
growth. Section V reviews conclusions and predictions.

Tonservation of mass implies that the length of this region
nihcreases asxy~tY® and the thickness decreases as
Hy~t~ Y3

Near xy, the edge of the outer region, the profile is
Il. MATHEMATICAL FORMULATION smoothed by surface tension. Troia all* proposed a

We study the evolution of fluid, released at the top of anquasi-steady approximation in which the outer solution pro-
inclined plane, as it drips down the incline. The fluid/air/ vVides boundary conditions for the flow in thisner region
solid contact line is initially straight, but may form fingers as Troian et al** and Hocking® use these boundary conditions
the interface evolves. First we discuss the lubrication apto set the scale for the flow near the contact line. The appro-
proximation for such a setup, including the different regionspriate scalings are
of interest and their length and time scales. Then we discuss h=hH
the particular contact line model chosen here, the “traveling N>
wave solutions” in this model and a comparison of the pa-  (x,y)=(x/,y/), 5)
rameters in the model with actual experiments. —

t=t(//U).

_ _ ~ Here, /=Hy/(3Ca)"®, where Ca uU/y is the capillary
The standard mathematical formulation for such wettingnumber. When expressed in terms of these units, the height
flows is the lubrication approximaticii:by depth averaging and width of the base profile remain nearly constant in time.

the velocity field of the liquid over the thickness of the film, With these resca”nggjropping the baps Eq. (3) becomes
the Stokes equations reduce to a more tractable partial dif- 3 392 133
hi+ (h3)+ V- (h3V V2h—cot(a)(3Ca*h3Vh)=0.

ferential equation for the thickness of the film. 6
If the film thickness is(x,y.t), the velocityV(x,t) is 6)
In the forthcoming analysis, we defin®(a)=cot(a)

— _h2 H 2
37V(xy.)==h"Vp+pgsin(a)h°x, (1) x(3Ca)®. The importance of this quantity was noted by
where 7 is the viscosityp the internal pressure, the fluid ~ Goodwin and HomsY who considered the distinguished
density, andy the gravitational acceleration. The pressure islimit Ca—0, D—1.

A. The lubrication approximation
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It is useful to estimate the capillary number of the flow h(x,t)
as a function of the inclination angle. The flow field away
from the contact line determines the characteristic velocity
scale. IfL is the characteristic span-wise variation of the
film, then the characteristic time scateof the flow in the
outer region is

37L
T=———7,
pgsin(a)Hy

so that the velocityU~L/7, and the capillary number is
approximately

cae ™ pgsin(a)HE tarra>(HNp)2
a:—% = - ,
Y 3y 3 Cca

where/ .= ¥/ (pgcos()) is the capillary length. Note that

the capillary number is weakly time dependent due to the . .
. Scale is just the scale of surface roughness. For spreading on
time dependence di,.

smooth surfaced) would be set by van der Waals interac-
tions.

() FIG. 2. Schematic diagram of the model.

B. Contact line model

The analysis in this paper addresses the case of corrg:—' Traveling wave solutions

pletely wetting fluids. Even in this case, the boundary con- The base state before the instabfffty” is a traveling
dition at the contact line is a subject of deb&té*?In this  wave solutionh(x,y,t)=ho(x—Ut) of (6). The function
paper we use the model proposed by Tragaml* To avoid  hg(x) satisfies

confusion we briefly justify the model and point out its limi- _ 3 _ 3 3_

tations. For completely wetting fluidsvith zero equilibrium Uho+ (ho™Noxo D(@)ho™ho) +ho"=d, ©
contact anglg the only dependence of the profile far from whered is a constant of integration, and
the contact line on the microscopic physics near the contact cotla)Hy | 23
line is alogarithmic dependence on the microscopic length  D(a)=cof a)(3Ca)1’3=</—
scale’>?®2 No other microscopic parameter appears in the 7 cap
outer flow field. This result was first established by Dué8an Matching the front onto the rest of the solution specifies the
and later discussed through general scaling arguments by di#tegration constantl and the velocityU of the traveling
Genneg. The logarithmic dependence on the microscopicwave!® As x— —, the front matches ontd,—1. As
scale arises in relating the velocity of the front to the x—oo, the front must match onto the contact line. These two

(10

macroscopic contact anglg through Tanner’s law matching conditions fix botky andd to be
(log(1/b)) 1-b® 1-b?
2__ = = —

whereb is the ratio of the microscopic to macroscopic lengthwhich uniquely fix the traveling wave solution.
scales. This formula represents the balance between surface Givenb andD, Eq. (9) can be solved for the shape of
energy and energy dissipation in a moving wedge. The logathis solution. The first graph in Fig. 3 shows for differdnt
rithm arises from the divergence of the energy dissipation athe profiles corresponding =0, in agreement with the
the contact liné® results of Troianet al1* These profiles all have a distinct
Realistically modeling the contact line is extremely dif- bump at the contact line. As mentioned above, the length
ficult. The fact that the macroscopic flow depends onscale of the linear instability is given by the characteristic
contact-line physics only through E@8) allows an enor- width of this bump. The second graph in Fig. 3 shows pro-
mous simplification: it is legitimate to ussny model of the files whenD=2.5. Here the situation is different: For all
microscopic physics near the contact line as long as it leadgrofiles, the size of the bump is substantially diminished. At
to the macroscopic spreading law E8). The simplest such b=0.1, it has essentially disappeared. Increaginglightly
model, proposed by Troiaet al. in Ref. 14, gives the micro- higher further diminishes the size of the bump. As the last
scopic physics as a thin film of thicknebspreceding the graph(lower left) in Fig. 3 shows, forD =5, the bump for
front (see Fig. 2 Although this thin film model does not b=0.01 has completely disappeared. A slight bump remains
accurately reproduce the actual microscopic physics near tHer b=0.001.
contact line, it introduces the microscopic schlénto the The height of the bump is a strong function Bf and
macroscopic flow field in the required manner. The lengthb. Since the bump height is the crucial parameter for deter-
scaleb does have physical significance, and represents theining whether the profile is stable or unstable, we show in
characteristic scale of the microscopic physics in a particulaFig. 4 the height of the bump as a function of these param-
experiment. For spreading on a rough surface, this lengtkters.
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FIG. 4. Maximum height of the profiles as a function DBf for different
FIG. 3. Profiles fob=0.1, 0.01, and 0.001. The maximum thickness of the Values ofb. When the maximum height is near 1, there is no longer a bump
bump is a logarithmic function df. The first graph shows the caBe=0, in the profile.
the second =2.5 and the third =5. Note that in each successive graph,
the heights of the bumps are substantially diminished. For the BasB
there is no bump in thb=0.1 andb=0.01 profiles. Fob=0.001 there is a . . i
very slight bump. the instability sets in, he deducdd and showed thaD
diverges at low inclination anglég;even at the highest in-

clination angled is still order one.

For each value ob there is a critical value ob for For each value ob, there is a critical value oD in (9)
which the bump completely disappears. We verify below thagibove which the bump in the profile completely disappears.
when the bump disappears, the front is linearly stable. Using the parameters given for de Bruyn’'s experiments

The traveling wave solutions have a characteristic scaléy=19.4 dyn/cm,»=0.525 g/cm/s andi\=0.3 cm yields
W in the x direction over which the thickness of the film D(a)=1.64(sin@))"%cot(e). This function is plotted in Fig.
decays. The scal/ depends strongly the inclination angle. 5.
For a near 90 degreed)V is of order/, independent ofx A typical experimental surface has microscopic imper-
when expressed in the units of EG). When the gravita- fections on the scale gfm, suggestingg~10"3~10"*. The
tional flattening term is important the characteristic width ofcalculations shown in Fig. 4 indicate thatmust be at least

the profile isnot given by the scalings of E@5), but instead  in the range 5-8 in order to suppress the bump. The corre-
by sponding critical angle is around*~ 5-10 degrees. The

inclination angles explored in de Bruyn’s experiments are in
W~D(a)/ =Hycot( ). ges exp yn's exp

the range 2-20 degrees, so at the smallest angles in the
At high D the decay of the front is much more gradual than
at D=0. However, it is important to note that close enough
to the edge there ialwaysa region of size”” where surface
tension is important.

By solving the full Stokes equations, Goodwin and
Homsy’ made extensive calculations of the profiles at smalll ,
inclination angles. Their calculations demonstrate that the 60.0 |
size of the bump decreases with decreasing inclination angle.
They also discuss the dependence of the size of the bump on
the contact angle boundary condition. The latter dependence = 400 | 1
is outside the focus of this paper, since we consider only ©
completely wetting fluids.

80.0 T T T T

20.0
D. Comparison with experiments

Given the strong dependence of the shape of the profile
on the valye oD, it is of !n_terest to know the value @ in 00,5 200 20.0 50,0 0.0 100.0
the experiments. Combining formuldg) and (10) shows o (degrecs)
that at small angles)(a)~a %2 The fact thatD(«) be-
comes large at low inclination angles was emphasized by dgig. 5. b(a) as a function ofa for the parameter values of de Bruyn's
Bruyn? By measuring the thicknesddy of the film before  experiments. Note thad diverges asr2* at small angles.
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FIG. 6. The growth ratg8(q) computed from the long time behavior of solutions of the linear RDE with D(«)=0 (top) andD(a)=5 (bottom).

experiment the initial profile should not have a bump. For theNote that ifh, were constant, Eq(12) would have no un-
original experiments of Huppert, the inclination angle isstable modes. Thus the linear instability results from the
around 12 degrees, indicating a slight bump. complex structure ofy,.

In an actual experimenD is time dependentin the Troian et al}* calculated the growth rate for smajl If
above analysis, the quasi-steady approximation assumes itggx,q) =e”' ¢(x,q), the spatial dependence(x)~hg, for
constant. We discuss the consequences of this assumptiongatfficiently long wavelength disturbancésince hy, is the
the end of Sec. Ill. marginal translation modeThen to leading order in?, the

growth rate is

9> [~
lll. LINEAR STABILITY ANALYSIS B(Q)= —bJ: (hg—1)(ho—b)(ho+1+b)dx. (13

1
The traditional approach to hydrodynamic stability is via Tpjg equation holds even whéd is nonzero.

a linearization of the equation about a steady solution fol-  The most important feature of EQL3) is that if hy<1,

lowed by an eigenvalue analysis of the linearized problemthenﬁ(q)<o at long wavelengths. Fg8 to be positive h,

In this section we compute the largest eigenvalue associatgf,st pe greater than one in a large enough region that the

with the linearization of6) about the traveling wave solution positive portion of the above integral cancels out the nega-

ho to (9) and discuss the role of the gravitational force nor-tjye portion. Thus, for the profile to be linearly unstable the

mal to the inclined plane. We show that there is a discrepbump must have a finite size.

ancy between experimental results and stability predictions  Now we determine the eigenvalug$q) as a function of

via eigenvalue analysis. In the next section we show that ag by solving the full linear PDE12) numerically on a suit-

eigenvalue analysis does not accurately capture the reIeva§5|y large domain. For eaay we start with a generic initial

dynamics of the linearization. condition, examine the long time behavior of the solutions to
Following Troianet al,** we use a reference frame trav- £q. (12), and extract the exponential growttecay rate.

eling with the speed of the traveling watg=1+b+b”  The numerical scheme is a standard implicit finite-difference

Consider a perturbatiorg(x,y,t), to the fronth,. We think  scheme(see e.g., Ref. 28the only complication is that for

of g asO(1) ande<1. Later we discuss the relevant size of smgji b, it is necessary to use a nonuniform mesh with re-

e for physical experiments. Pluggirig=ho+ eg(x,y,t) into  finement at the apparent contact line in order to completely

(6) and saving only those terms that #@ge), to first order  egolve the unperturbed profite. Figure 6 showss(q) for

in e the equation for the perturbation profteis several small values df for bothD(a)=0 andD(a)=5.
gi+ V- (3h2g(VV2hy—D(a)Vhg))+ V- (hy3(VVZg The growth rate curve shown in Fig. 6 fir=0 agrees
, with the computations of Troiaat al* However, a moder-
—D(@)VQg))+3(hy“g)x—Ug,=0. (1) ate value oD(a) modifies the growth rate considerably; the

The eigenfunctions and eigenvalues of solutiongly ~ Profile is linearly stable wheh is larger than a critical value

determine the classical linear stability. Since the steady sd?* (@) depending on the inclination angle. As suggested by
lution, hy, does not depend on the transverse varighlgq. ~ Poth intuitive reasoning and the long wavelength calculation

(11) can be Fourier transformed in discussed above, linear stability corresponds to the disap-
- 3 3 pearance of the bump in the profiles.
9(x,q)¢+ dx(3he“g(dxho—D(a)dxhg)) + dx(ho®(d59 The linear growth rates in Fig. 6 suggest a paradox: the

_D(a)d — ?h3a.t D 2,3 bump _res_pon_sible for the linear instapility disappears at the
z(a) ;g)) q 402” (j)q o9 small inclination angles of the experiment, but the experi-
—°dx(hgdx9) +q"hog +3(hgg)x—Ugx=0. (12 ment still shows that the interface destabilizes. What could
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be the reason for this discrepancy? We describe below thregict stability. This kind of growth may cause an initially
different possibilities, the last of which we believe to be thesmall perturbation to reach an order one size on a transient
most relevant. We elaborate on this point in subsequent setime scale, exciting nonlinearities and causing an observable
tions. instability.

One scenarf* uses the breakdown of the quasi-static ~ The goal of this section is to illustrate that regardless of
approximation to explain the change in stability: at earlythe size of the bump in the fromi, (hence regardless of the
timesD may be of significant size, however the thinning of eigenvalues of the linearizatinrsolutions of(12) grow by a
the film described in4) caused to decrease over time. In factor of 1b on a transient timescale, that is by a factor that
this picture the instability occurs as soon Bsis small  scales inversely with the microscopic length scale. Since in
enough so that the profile is linearly unstable. At small incli-experiments typically is of order 103— 104, this effect is
nation angles, the conditioD~1 is equivalent to the film considerable. It is sufficient to explain instability where ei-
thickness satisfyingHy~ a/'c,p. The capillary length is  genvalue analysis fails, if it causes a perturbation to grow to
typically a few millimeters; thus whea=3 degrees{the  size O(1), that is if the initial perturbation size satisfies
smallest angle in de Bruyn’s experimepthe film thickness  ¢=0(b) whereb<1. This situation is in fact expected, e.g.,
would have to be smaller thar0.1 mm forD to be in the in the case of surface roughness, the size of the roughness
unstable regime. The measured thickness in de Bruyn'getermines both the microscopic scale for the model and the
experiments, are 0.3 cm, about a factor of ten larger thansjze of the noise. We also note that, as shown in Ref. 34,
this threshold. Thus, the hypothesis tBatlecreases until the transient growth of a smaller magnitude than the inverse of
film becomes linearly unstable seems insufficient to explairhe characteristic size of the noise can sometimes still ulti-
the |nStab|l|ty in de Bruyn’s eXperimeﬂtS; however, a differ- mate|y lead tcO(l) effects via a “bootstrapping” mecha-
ent experimental setup might attadr~1 at very low incli-  pism involving the nonlinearity.
nation angles by using extremely thin films. Before presenting the numerical results showing tran-

Two other scenarios are motivated by similar problemssjent amplification of solutions to the linearized equation
arising in the transition to turbulence in shear flows. In thiS(lz), we present a heuristic argument, based on the shape of

situation, an instability is observed at a Reynolds numbergne capillary profile, for why we might expect ablécaling
where the base state is linearly stable. One explanation, dygy the amplification factor.

to Landau®® describes the instability as weakly nonlinear . 3

and represents a finite amplitude instability to a nearby non®- Contact lines are amplifiers

linear state. Another explanation involves transient growth, We give a genera| argument that demonstrates that con-

in solutions to the linearized equations, that triggers the nongct lines are amplifiers: namely, small perturbations to the

linear instability>*~%’ interface in the vicinity of a contact line cause much larger
Below, we demonstrate that there is in fact significantperturbations to the outer flow field.

transient growth in Eq(12) due to the singular dependence  Consider a perturbation of sizein the microscopic re-

of the solution on the microscopic length schlat the con-  gjon near the contact line. The response of the outer flow

tact line. The transient growth occursgardlessof whether  field to this perturbation can be considered within our sim-

there is bump in the profile. We argue that this last scenarigjified model of the contact line, by studying a perturbation

is the most natural to explain the discrepancy between thgf size e to the thin film region ahead of the front. The major

growth rates in Fig. 6 and experiments. effect of this perturbation will be to change the local micro-
scopic length scale froh—b+ €. In an experimente will
IV. TRANSIENT GROWTH be on the order db, since it typically represents fluctuations

In the previous section we performed a classical hydroin the microstructure. As argued above in section Il, the lead-
dynamic stability analysis, namely linearization of the equaing order dependence of the outer flow field on the micro-
tion and computation of most unstable eigenvalues. Rescopic length scale is exactly captured by the simplified con-
cently, it has been pointed out that for certain problems thigact line model; hence, the response of the outer flow field to
approach can give results that do not correlate with experithe perturbation will be captured by our model. Figure 7
ments, not because of the failure of the linearization, bushows a sketch of such a perturbation to the model.
because of the failure of the eigenvalue analysig®Indeed, The crucial point in considering how this perturbation
the eigenvalues predict the long time state of the linearizeéffects the outer flow field is that the maximum height of the
system. And, when the associated eigenfunctions are all othick film depends in a singular way on microscopic scale.
thogonal the eigenvalues accurately capture the short timghis logarithmic dependence is demonstrated in Fig. 3: the
effects as well. However, in the case of a strongly non-rofile away from the contact lin.qg., the maximum thick-
normal system, in which eigenfunctions are closely alignedness of the filmis a logarithmic function ob. The reason
transient effects can occur that mask, on an intermediate timfer this logarithmic dependence was given by Dussan and
scale, the behavior predicted by the eigenvalues. The lineaPavis?® Dussarf.’ and de Genneswho showed that it ge-
ized equation accurately approximates the evolution of a pemerically arises from matching the behavior near the contact
turbation of the steady state as long as it remains small. Ifine (where h~x(log(x/b))*®) to the thick film. Placing a
the case of nonnormal operators, a solution to the linearizegerturbation of sizee on the thin film changes the front
equation may grow by orders of magnitude on a transienheight fromb—b+ €. This causes the outer solutidfor
time scale, even though all the underlying eigenvalues preexample, the maximum height of the filro become
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Thus, the contact lineamplifiesthe perturbation by a factor FIG. 9. Transient growth of perturbations =5 andb=10"3. Shown is
R(t)e™#' for g=0 andq=0.6.
Ahpax 1

€ b’

For experiments withh=10 3-10 4, growth by a factor of ast varies. The data shown ha®=5 andb=10 3. We
10°~10* can occur. Since we expect the scale of perturbashow several different values gf Note the huge amplifica-
tions to be on the order of size of the microstruct(tret is  tion of the solution for early times. Mathematically the tran-
the size ofb), this means that they will amplify to cause sient growth results from the fact that the linear operator in
order one changes in the front. The time scale of this ampliEq. (11) is not self-adjoin* One can observe this kind of
fication is the amount of time it takes for the traveling wavebehavior in other hydrodynamic systems, see e.g., Ref. 33.
to pass over the perturbation. Note that this same argument A useful way to focus on the early time transient is to
holds if the perturbation at the contact line varies with wave-factor out the exponential behavior &s>. Therefore, for
length much larger thaw. eachq, it is useful to examind(t) divided byef(@!, where

Now we verify the existence of transient growth in g(q) is the corresponding eigenval(as plotted on the right
Eq. (12) by explicit computation. We consideb=0.1 in Fig. 6). This quantity is shown in Fig. 9 foq=0 and
and D(a)=0, with an initial perturbation g  0.6. For linear systems with self-adjoint operators, this ratio
= G(y) ¢(x)sin(x/3), where ¢ is a cutoff function localized decays over time and approaches a constant-as. How-
around the downslope of the front and contact line. We comever, for non-self-adjoint systems, this ratio could grow by
pute the solution of the linearized E@.2) for different val-  orders of magnitude before saturating. Here there is amplifi-
ues ofg. Figure 8 depicts the ratio cation by a factor of 200 fog=0 and 800 forg=0.6.

Figure 10 shows how transient growth alone can affect
the front. We consider the caBe=5 andb=0.01, for which
there is no bump in the profile and hence all growth rates
B(0)=<0. Nevertheless, transient growth causes perturba-

R(t)=max|g(x,1)[/max/g(x,0)]

500 — a0 tions to grow by as much as a factor of 25 on an order one
— 3=0.12 time scale. Consider a perturbation of size0.01~b. The
400 | ——— =024 : figure shows the transient growth of a perturbation with
SN ——— q=0.36 wave numbeig=0.12. The top figure shows a contour plot

---- q=0438 of the front plus perturbation at=0, the bottom graph
300 e =TT shows the affect of transient growth alonet at4, when the
perturbation has grown to about 0.25. Such amplifications
are enough to incite nonlinear effects that can produce finger
formation?! To verify that the amount of amplification var-
i ies inversely with h we show in Fig. 11 the amplification
factor as a function ob for D=0. The simulations use the
same initial perturbation with base profiles corresponding to
different values of b. The data depict the
0 ' ‘ ‘ ' maxmax/|g(x,t)[/maxg(x,0) for theq=0 mode. The num-
bers indicate that the transient growth is inversely propor-
tional to b, in accordance with the qualitative arguments
FIG. 8. Transient growth of perturbations =5 andb=10"3. Shownis ~ above. The same scaling is seen upon choosing different val-
R(t) = |0 maxt)/|0lmax(0) for g=0,0.12,0.24,0.36,0.48. ues ofD andq.
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FIG. 10. Contour plot of the thickness profli€¢x,y,t) atD=5,b=0.01 when all3(q)<0. The figure shows the corrugation of the front by a disturbance of
wave numbeq=0.12. In both figures, the color white denotes the thick fim=(), and the color black denotes the thin film regidr=0.01). The plot on

the top shows a small disturbance placed on the front at tim@. The plot on the bottom shows the linear transient growth of this disturbance at time
t=4; the maximum of the disturbance has grown by a factor of 25. Such a transient amplification is sufficient to excite nonlinear finger growth.

We emphasize that for experiments amplification of or-B. Experimental consequences
derb™" is precisely what is needed to guarantee instability order for transient modulations of the front of the type
for spreadmg on a rough 'surface..ln reality,is alocal . shown in Fig. 10 to evolve into fingers, nonlinear effects
quantity representing the microscopic length spale atagivep st cause these corrugations to grow. The predominant
point. On a rough surface fluctuatesas a function of posi- ,njinear effed?is the gravitational forcing in the direc-
tion. The characteristic amplitude of the fluctuations is als ion parallel to the inclined plane, given by thesin(a)
of orderb. The surface roughness therefore plays the du (h), term in Eq.(3). This force causes thicker regions to

rc_)lt_a of both settlng_ the MICTOSCoOpIC length s_cblcand PrO" " he convected faster than thin regions, leading to fingers.
viding a nat.u_ral hoiseé source, W.'th Pfrturpatlons of oﬂpher The determining factor for finger formation is the time
Thus, a_tmphflcatlon factors of sizb ™= suffice _t_o ampIn_‘y scale of the nonlinear effects compared to the time scale of
t_hese dlsturbances to be order 1! thereby exciting ”°”"“eaﬂhe linear corrugationeither through transients or modal
ties. A spre'a.dlng drop on a horlzontal surf.ace also_ eXpe”growth). The latter time scale is

ences amplification of fluctuations on the microscopic scale;
however, in this situation there are no nonlinear convective L

instabilities. Ttrans— Ue
front

whereL is a characteristic length of the front ablg,, is the
front velocity.
1000 : : The time scale for the nonlinear effect follows directly

from the convective term in Ed3), pgsin(a)(h®), as
®
nL
. Thonlinealr™ _~ -~ 21
sin(a)h
% 100 L i posin(a) 0
g o wherehy is the characteristic height of the front. When the
1] incline is nearly verticak=90°, thenL=W andhy=H as
5 defined above. In this case, the nonlinear time scale is of
§ ol 1 order the transient time scale since all time scales are of the
a same order in Eq(6).
R WhenD is large, the situation is more subtle: The tran-
sient growth occurs in the region away from the contact line
. whereh~x(log(x/b))*3. At large D this regime ends a dis-
1o® 10 10" 10° tance of order/ .= \¥/(pgcos()) away from the contact
b line. Thus, the length scalé~/"¢,,. The characteristic
heighthg~ 6/ ¢4, Whered is the macroscopic contact angle.
FIG. 11. Transient amplification as a function lnf The dotted line repre- In order for the nonlinearities to initiate instabilities, it is
sents the predictiob™*. necessary that,,ns> Thonlinear IN the D— o limit, the above
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estimates implyUy < y#%tan@)/n. The velocity of the Wwhen the rotation rate is small enough that the “gravitational
front is given by Tanner's law8). The condition for an flattening” term is the same order of magnitude as the cen-

instability is therefore trifugal force, stabilization of the profile results. The charac-
teristic rotation rate for this stable regimeyjg hO/Roz, where
f<tanwxlog(1lb)~alog(1b) as D—o. (14) R, is the radial extent of the drofh, is the characteristic

height, andg is the gravitational acceleration. For typical

In order for the fingers to form at very low inclination €xperimental parameters, the critical frequency is of order
angles, the macroscopic contact angle mustrballerthan a 1 Hz, which has not been systematically explored. Melo,
constant multiple of the inclination angle. Therefore, there isJoanny, and Fauvenote, however, that when the solid sub-

a lower critical inclination ang|ddepending on the drop strate is coated with a thick enOUgh film of ||qU|d, the insta-
shape below which the spreading is perfectly stable: thebility is suppressed.

nonlinearities are insufficient to form fingers from the tran-  Finally, contact line amplification suggests a natural ex-
sient modulations of the front. On the other hand, as long aBlanation for irregularity observed in fingering, in which

the macroscopic angle is above this lower critical angle, finWavelengths of successive fingers vary by as much as 25
gers will form. percent. This mechanism operates with comparable strength

for all wavelengths near the characteristic width of the
profile. For a transient timéof order the experimental time
scalg perturbations with wavelength larger th&v all am-
plify at similar rates. Nonlinearities then dictate the wave-

This paper revisits the fingering instability of fluid drip- |€ngth distribution of the experiments. This idea can be
ping down an inclined plane, first discussed by Huppert. tested experimentally: Varying (the ratio of the outer scale

The first part of the paper shows that the fingering instabilityto the inner onechanges the importance of transient effects:

sometimes happens in experiments even when the base proreliminary experiments by Cazabat show for thermal forc-
file is linearly stable. There is a critical inclination angle "9 (where a linear instability existsthe distribution of
«* below which there is linear stability. wavelengths broadens as decrease® For the inclined

We present a solution to this paradox by pointing outPlane, the distr'ibuFion. of Wavelengths should become
that even when the profile is linearly stable, there is a|Way§)roader_at small |nc_l|n_at|on angles: thls_trend has been n_oted
significant transient growth in which small perturbations near" €Xperiments of Silvi and Dussdrand is also apparent in
the contact line can grow by a factor of3tal(". The tran- € Bruyn’s data. _ L
sient growth is a result of the singular dependence of the 1he Most vexing theoretical problem remaining is to pre-
outer flow on the microscopic scale at the contact line. Fofict the distribution of finger wavelengths as a function of
example, as the fluid flows across a rough surface, ﬂuctuap and the |ncl_|nat|on angle. In experiments, the microscopic
tions in the microscopic scale translate into large fluctuationd€ndth scaléb is not constant, but fluctuates as a function of
in the outer flow. This transient growth triggers nonlineari- Position:b(x,y)=b+ 7(x,y), whereb is the average micro-
ties that result in a fingering instability. The wavelength of SCOPIC scale ang is a Gaussian noise source. For a particu-
the instability is set by the widthV of the steady profile. At 1ar noise source, what is the distribution of finger wave-
low inclination angles, this width is significantly larger than lengths? For industrial applications, it would be interesting to
for vertical walls. We also reemphasize that regardless ofnow whether a functioib(x,y) exists for which the finger-
whether the angle is above or below the critical angle forlng instability is actuallysuppressedn such a situation, the
linear instability, transient growth always occurs with ampli- Surface could be “primed” to suppress instabilities in a
fication inversely proportional to the microscopic lengthdriven coating process.
scale at the contact line. There is a second critical inclination
angle below which the nonlinearities are not strong enough
to trigger finger formation from the transients. Below this \ckNOWLEDGMENTS
inclination angle(which depends on the macroscopic contact
angle of the fluidl no fingering occurs. We thank Professor J. de Bruyn for communicating the

At inclination angles where the front is linearly stable values ofD(«) in his experiments, Professor G. Homsy for
but fingering still occurs, transient growth causes corrugahelpful comments on the manuscript, and Professor H. Hup-
tions of the front. Experiments of de Bruyn clearly show thatpert for a penetrating question about the low inclination
after an initial transient time periodoughlyt=25 in dimen-  angle limit. This research was partially supported by the
sionless unitsfinger growth actually becomes exponential in MRSEC Program of the National Science Foundation under
time?® This exponential growth is due torenlineareffect,  Award No. DMR-9400379. In addition, A.B. is supported by
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