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The helical coiling of plant tendrils has fascinated scientists for centuries, yet

the underlying mechanism remains elusive. Moreover, despite Darwin’s widely

accepted interpretation of coiled tendrils as soft springs, their mechanical be-

havior remains unknown. Our experiments on cucumber tendrils demonstrate

that tendril coiling occurs via asymmetric contraction of an internal fiber rib-

bon of specialized cells. Under tension, both extracted fiber ribbons and old

tendrils exhibit twistless overwinding rather than unwinding, with an initially

soft response followed by strong strain-stiffening at large extensions. We ex-

plain this behavior using physical models of pre-strained rubber strips, geo-

metric arguments, and mathematical models of elastic filaments. Collectively,

our study illuminates the origin of tendril coiling, quantifies Darwin’s original

proposal, and suggests designs for biomimetic twistless springs with tunable

mechanical responses.
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The transformation of a straight plant tendril into a helically coiled shape has inspired nu-

merous studies since the 1800’s (1–8), both from mechanistic and functional perspectives. Ten-

drils serve climbing plants by providing a parasitic alternative to building independently stable

structural supports, allowing the plant to wend its way to sunlight and numerous ecological

niches (9). During climbing, an initially straight tendril first finds and attaches to a support

(Fig. S1, movie S1). Once tethered, the tendril coils by forming two oppositely handed helices

connected by a ‘perversion’ (Fig. 1, A and B), recognized by Darwin as a topological necessity

given the clamped boundary conditions at each end of the tendril (3). This helical coiling axially

shortens the tendril, hoisting the plant toward the attachment point (Fig. S1, movie S1).

Despite the long history of studying tendrils, the basic mechanism of tendril coiling has

remained elusive. Historically, experimental studies of diverse tissues (reaction wood (10),

hypocotyls (11), twining stems (12, 13), and leaves (14)) have addressed aspects of curva-

ture generation, while theoretical treatments have incorporated intrinsic curvature or differential

growth without addressing its origin or mechanical consequences (6, 15, 16). Recent studies of

tendril anatomy (17, 18) have provided a new twist by revealing an interior layer of specialized

cells similar to the stiff, lignified gelatinous fiber (g-fiber) cells found in reaction wood (20). In

reaction wood, these cells provide structural support via tissue morphosis driven by cell wall

lignification, water flux, and oriented stiff cellulose microfibrils. The presence of a similar

ribbon-like strip of g-fiber cells in tendrils suggests that the coiling of the soft tendril tissue may

be driven by the shaping of this stiff, internal ‘fiber ribbon’ (18).

We investigated the role of the fiber ribbon during tendril coiling in both Cucumis sativus

(Cucumber) and Echinocystis lobata (Wild Cucumber) (details in supplement) (19). The g-fiber

cells, identified in wild cucumber using xylan antibodies in (18), are easily distinguished as a

band of morphologically differentiated cells consistently positioned along the inner side of the

helical tendril, that lignify during coiling (17, 18). In straight tendrils that have not yet attached
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to a support (Fig. 1A), a faint band of immature g-fiber cells is barely visible using darkfield

microscopy (Fig. 1B), with no ultraviolet (UV) illumination signature, indicating the absence

of lignification (Fig 1C). In coiled tendrils (Fig. 1D), g-fiber cells are clearly visible (Fig. 1E)

and lignified (Fig. 1F). The fiber ribbon consists of two cell layers, with the ventral layer on the

inside of the helix showing increased lignification relative to the dorsal outer layer (Fig. 1, G

and H), consistent with earlier observations of increased lignification on the stimulated side of

the tendril (17,18). When a fiber ribbon is extracted from the coiled tendril using fungal carbo-

hydrolases (Driselase, Sigma) to break down the nonlignified epidermal tendril tissue (details in

supplement), it retains the helical morphology of a coiled tendril, and furthermore, lengthwise

cuts do not change its shape (Fig. 1I, Fig. S2).

These observations suggest that tendril coiling occurs via asymmetric contraction of the

fiber ribbon; the ventral side shrinks longitudinally relative to the dorsal side, giving the fiber

ribbon its intrinsic curvature. The asymmetric contraction may be generated by a variety of

dorsiventral asymmetries, including the observed differential lignification (Fig. 1H), variations

in cellulose microfibril orientation as in reaction wood, or differential water affinities. For ex-

ample, since lignin is hydrophobic, the ventral cells may expel more water during lignification,

driving increased cell contraction. This would be consistent with observations of extracted fiber

ribbons that passively shrink and coil even further when dried, but regain their original shape

when rehydrated (movie S2). Dehydrated tendrils also exhibit this behavior, since they are

dominated by the stiff fiber ribbon (movie S3). Together, these facts suggest that the biophys-

ical mechanism for tendril coiling is provided by the asymmetric contraction of the stiff fiber

ribbon, whose resulting curvature is imposed on the surrounding soft tendril tissue. The perver-

sions in a doubly-supported tendril follow naturally from the topological constraint imposed by

the prevention of twist at its ends.

To better understand the origin of curvature in fiber ribbons, we reconstituted the underlying
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mechanism using a physical model composed of two bonded, differentially pre-strained silicone

rubber sheets, similar to rubber models for shaping sheets (21–23). The first silicone sheet was

uniaxially stretched and an equally thick layer of silicone sealant spread onto the stretched sheet.

After the sealant was fully cured, thin strips were cut along the pre-strained direction, yielding

bilayer ribbons (Fig. 2A) with intrinsic curvature set by the relative pre-strain, thickness, and

stiffness of the two layers (Fig. S3, details in supplement). Like fiber ribbons, the initially

straight physical models spontaneously form coiled configurations with two opposite-handed

helices connected by a helical perversion (Fig. 2A, left).

However, there is an unexpected difference in mechanical behavior between the physical

models and tendril fiber ribbons. When clamped at both ends and pulled axially, the physical

model simply unwinds to its original uncoiled state (Fig. 2A, movie S4). In contrast, in fiber

ribbons we observed a counterintuitive ‘overwinding’ behavior where the ribbon coils even

further when pulled, adding turns on both sides of the perversion (Fig. 2A, right, movie S5).

Eventually though, under high enough tension, the fiber ribbon unwinds, returning to a flat,

uncoiled state as expected (movie S5).

Inspired by our observations of asymmetric lignification in fiber ribbons, which suggest that

the inner layer is less extensible, we added a relatively inextensible fabric ribbon to the inside of

a coiled physical model. To mimic lignified cells that resist compression, we added an incom-

pressible copper wire to the exterior of the helix. The internal fabric ribbon prevents elongation,

while the external copper wire prevents contraction. Together, these modifications increase the

model’s effective bending stiffness relative to its twisting stiffness, fixing its intrinsic helix cur-

vature while still allowing twist about its centerline (supplemental text). The modified model

exhibited significant overwinding (Fig. 2C; movie S6). Indeed, a single helix with infinite bend-

ing stiffness and fixed curvature can not extend without its ends rotating. However, if one end

may rotate, additional axial length can be accommodated by changing both pitch and radius to
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maintain constant curvature, resulting in additional helical turns (supplemental text). The per-

version connecting helices of opposite handedness allows rotation and enables the addition of

helical turns. By overwinding, each helix can thus geometrically accommodate axial extension

without varying its curvature (Fig. S4).

Of course, real tendril fiber ribbons have finite stretching and bending stiffness, and even-

tually at sufficiently high tensions, the helices unwind. To study overwinding in a fiber ribbon

with finite bending and twisting stiffness, we model it mathematically as a filament composed

of two equal length, elastic helices of opposite handedness but identical intrinsic curvature k0

and torsion w0, and uniform bending stiffness B and twisting stiffness C, connected by a single

helical perversion (Fig. 2D, left). When the filament, initially at equilibrium, is pulled apart at

its clamped ends, deviations from equilibrium values of curvature and twist lead to variations in

the filament’s total energy (supplemental text). Minimizing the energy of the extended filament

numerically (supplemental text), we determine the filament shape and position as a function of

the applied tension (Fig. 2D, right). We find that when B/C < 1, the filament unwinds on

extension, but when B/C > 1 the filament overwinds (Fig. 2D, movies S7 and S8), and the

number of additional turns ∆N increases with increasing B/C (Fig. 2E) (24). For comparison,

we note that for a helical spring with a circular cross-section made of an isotropic material,

B/C = 1 + ν, with Poisson ratio ν normally in the range 0 < ν . 0.5 so that typical springs

exhibit minimal overwinding.

The observation of overwinding in fiber ribbons naturally leads to the question of whether

entire tendrils also overwind. Interestingly, we find that while both young and old fiber ribbons

always overwind, recently coiled, fully hydrated tendrils (‘young’ tendrils) do not overwind,

but mature, dry tendrils (‘old’ tendrils) exhibit significant overwinding (Fig. 2F, movies S9 and

S10) and intermediate tendrils were variable in their overwinding behavior. The overwinding

observed in old tendrils is likely due to the fact that as the tendril dries, the epidermal cells lose
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volume and the tendril flattens down to a ribbon-like shape similar to the internal fiber ribbon,

so that B/C > 1.

To investigate the mechanical and functional consequences of overwinding, we measured

the force required to axially stretch tendrils using a custom force measurement setup (details in

supplement). Force-extension curves measured for a total of 20 tendrils show a variety of me-

chanical responses; in Fig. 4A, we plot the dimensionless force F̃ against the scaled displace-

ment ∆l (detailed definitions of ∆l and F̃ in the supplemental text) for the two most extreme

cases, a young tendril (red) and an old tendril (blue). For each, we show the results for a seg-

ment containing the perversion (‘perverted’ - dotted curves), and another for a segment without

it (‘clamped’ - solid curves). In the young tendril, the perverted segment is always softer than

the clamped segment (Fig. 3A). In contrast, the perverted segment of the old tendril is initially

softer than the clamped segment, but becomes stiffer at large extensions. Plotting the difference

∆f = f (perverted) −f (clamped), where the scaled force f is obtained by dividing each force

curve by its own initial slope (Fig. 3B), we see that for the young tendril where no overwinding

occurs, ∆f is always negative, indicating that the perversion consistently decreases the force

necessary to stretch the tendril relative to the clamped case. However, in the old, overwinding

tendril, the perversion actually increases the force needed to stretch the tendril as ∆l increases.

To quantify the behaviors bounded by these two extreme tendril measurements, we also

calculated force-extension curves using our mathematical models. The dimensionless force-

extension curves for filaments with B/C = 1/5 (red), 1 (green), and 5 (blue) are shown in

Fig. 3C. Similar to the behavior of the young tendril, in the filament with B/C = 1/5 (no

overwinding), the presence of the perversion decreases the stiffness of the system, i.e. the force

needed to axially extend the filament. However, the force response qualitatively changes when

B/C & 3, and the filament exhibits substantial overwinding. As in the old tendril, initially

the perversion decreases the force needed to stretch the filament, but at large extensions, the

6



perversion actually increases the force needed, i.e. the differential stiffness of the system is non-

monotonic. Indeed, we observe that the difference ∆F̃ = F̃ (perverted)−F̃ (clamped) is always

negative for filaments with B < C, while in overwinding filaments with large B/C values, ∆F̃

transitions to positive values at large extensions (Fig. 3D). Thus, in overwinding filaments, a

helical perversion initially softens the force response but eventually stiffens the filament relative

to the clamped case, a behavior qualitatively different from earlier theoretical studies (6, 16),

where overwinding was not observed in the range of B/C values studied. The difference in

scaled force ∆f shown in the inset Fig. 3B is consistent with observations (Fig. 3B), indicating

that the unusual force-extension behavior shown in Fig. 3D explains the extremes observed in

the two tendrils.

Collectively, our observations raise questions at an evolutionary level about the ubiquity of

this mechanism in other tendril-bearing species, and at a mechanical level about the functional

principles of these soft twistless springs. Preliminary studies of Passiflora tendrils reveal a

band of g-fibers, suggesting a similar coiling mechanism (Fig. S5); however, both young and

old coiled Passiflora tendrils exhibit overwinding (Fig. S5, and movie S11). Although Cucur-

bitaceae and Passifloraceae are from the same phylogenetic clade, their tendrils have evolved

independently (25), inviting future comparative studies between species as well as investigations

of subcellular processes regulating asymmetric contraction. Functionally, the combination of

mechanical asymmetry, helical perversions and large ratios of bending to twisting stiffness cre-

ates an auto-adaptive springy tendril, one that is initially soft because it can overwind and then

stiffens strongly when deformed further. Darwin himself wrote that ‘the tendril strikes some

object, and quickly curls round ...contracts into a spire, dragging up the stem, and forming an

excellent spring’ (3). Our study illuminates and quantifies this proposal biophysically while

suggesting biomimetic variants of the humble helical spring.
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Materials and Methods

Figs. S1-S5

References (27-30)

Movies S1-S11

Figure 1: Tendril coiling via asymmetric contraction. During coiling, a strip of specialized
structural gelatinous fiber cells (the fiber ribbon) becomes lignified and contracts asymmet-
rically and longitudinally. (A-C) A straight tendril that has never coiled (A) lacks lignified
gelatinous fiber (g-fiber) cells. Tendril cross section, darkfield (B) and UV autofluorescence (C)
showing no lignin signal. (D-H) In coiled tendrils (D), the fully developed fiber ribbon consists
of ∼ 2 layers of highly lignified cells extending along the length of the tendril. Tendril cross
section, darkfield (E) and UV autofluorescence (F) showing strong lignification in the fiber rib-
bon. (G,H) Increased magnification reveals that ventral cells (top left) are more lignified than
dorsal cells. (I) The extracted fiber ribbon retains the helical morphology of the coiled tendril.
Inset: Higher magnification shows the orientation of g-fiber cells along the fiber ribbon. Scale
bars: (B,C), 0.5 mm; (E,F), 100 µm; (G,H), 10 µm; I,1 mm.

Figure 2: Twistless springs unwinding and overwinding. (A) A silicone twistless spring
with lower bending stiffness B than twisting stiffness C unwinds when pulled, returning to its
original flat shape. (B) When a fiber ribbon is pulled, it initially overwinds, adding one extra
turn to each side of the perversion (number of turns indicated in white). (C) Overwinding is
induced in the silicone model by adding a relatively inextensible (under tension) fabric ribbon
to the interior of the helix and an inextensible (under compression) copper wire to the exterior.
Together these increase the ratio B/C. (D) When B/C > 1, numerical simulations of elastic
helical filaments recapitulate this overwinding behavior, consistent with physical and biological
experiments. (E) Change in the number of turns in each helix ∆N is plotted versus scaled
displacement ∆l for B/C values 1/5 (red), 1 (green), 5 (blue). Overwinding becomes more
pronounced with increasing B/C. (F) Overwinding is also observed in old tendrils, which have
dried and flattened into a ribbon shape with B/C > 1. Scale bars 1 cm.
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Figure 3: Mechanical consequences of overwinding. (A-B) Force extension curves for one
young tendril that does not overwind (red curves) and one old tendril that exhibits significant
overwinding (blue curves). Each tendril was separated into a segment containing the helical
perversion (‘perverted’ - dotted curves) and a segment with no perversion (‘clamped’ - solid
curves). The dimensionless force F̃ is plotted against the scaled displacement ∆l (see supple-
ment for detailed definitions) in (A). The difference in scaled force due to the helical perversion
∆f = f (perverted)−f (clamped) is plotted against ∆l in (B). The shaded range in (B) indicates
variations in the fitted initial slope value. (C) Dimensionless force-extension curves are plotted
for numerical filaments with B/C values 1/5 (red), 1 (green), 5 (blue). Inset: Log-linear plot
of the same data. (D) The difference in force ∆F̃ = F̃ (perverted) −F̃ (clamped) highlights the
mechanical effect of the helical perversion. For B < C, the perversion always decreases the
force needed to axially extend the filament; for B > C, the perversion initially decreases the
force needed, but eventually increases this necessary force at higher extensions. Inset: ∆f is
plotted against ∆l for direct comparison with the experimental data.
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Section 1: Materials and Methods

Description of growth conditions

All plants were grown in the Department of Organismic and Evolutionary Biology greenhouses

at Harvard University in long day conditions of 16 hour light/8 hour dark at a constant temper-

ature of approximately 25◦C.

Microscopy

A Zeiss AxioImager Z2 (Harvard Imaging Center) fitted with a Zeiss AxioCam Mrc digital

camera was used for capturing darkfield and UV images of tendril cross sections. Fiber ribbons

were imaged with an Insight Spot camera mounted on a Leica Wild M10 dissecting scope.

Color images of tendrils, models, and fiber ribbons were taken with a Nikon D40x.

Fiber ribbon extraction

To extract fiber ribbons from whole tendrils, a solution of 2% Driselase (by weight) in phosphate

buffered saline (PBS) was prepared. Since Driselase does not go completely into solution in

PBS, the mixture was vortexed vigorously and then allowed to sit for 30 minutes. A fresh

tendril was submerged in the Driselase supernatant and stored at 37◦C overnight. After soaking

overnight, the tendril was removed and briefly rinsed in fresh PBS. Forceps were used to gently

slide the broken-down epidermal cells off of the fiber ribbon.

Physical model construction

Composite bilayer strips were constructed from prestrained silicone rubber in a three step pro-

cess. First, a wide silicone rubber sheet was stretched along one axis to approximately 1.75

times its initial length (strain = 1.75), and was held clamped at this length. Second, another

silicone layer consisting of Dow-Corning 732 multipurpose silicone sealant was added to the
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stretched sheet along the strained axis, far from the edges of the sheet. Upon curing, the two

layers were permanently bonded, creating a composite prestrained structure. In the final step,

strips approximately 8 mm wide were cut along the stretched direction, and then the ends of

the strips were released, allowing the composite material to relax to its equilibrium shape, with

intrinsic curvature set by the relative strain, thickness, and stiffness of the two layers.

Force measurement apparatus

Tendrils were clamped at one end to a translation stage (Newport 426 crossed-roller bearing

linear stage, with a Newport universal controller, model ESP 300) and clamped at the other

end to a full bridge thin beam load cell (Omega LCL-113G) connected via a digital transmitter

(Omegabus D1521) to RS-232. Custom LabVIEW software was used to move the translation

stage in steps of 0.1 mm, measure force with the load cell, and simultaneously image the tendril

with a digital ccd camera (Allied Vision Technologies Marlin) to monitor overwinding or un-

winding behavior. Since both ends of the tendril were clamped, the ends were prevented from

rotating during extension.

Numerical simulations of helical rods

As described in the main text, tendrils are a composite of a soft, fleshy bulk and a very stiff

fiber ribbon. Here, we do not analyze the detailed mechanics of the composite tendril, and

instead focus on a simple model that allows us to uncover the mechanical response of the tendril

using a 1-dimensional equivalent filament with a naturally helical shape due to the asymmetric

shrinkage of the fiber ribbon. This approximation allows us to capture the mechanics of the

tendril on length scales that are large compared to its radius in terms of a parametrization that

requires its original shape, as well as its bending, twisting, shear and extensional stiffness which

we assume to be uniform along the filament. As the filament deforms in response to boundary
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or body forces, there is an elastic potential energy associated with bending, twisting, shear and

extensional deformations as well as a kinetic energy associated with the velocity of the rod

(although the effect of inertia is irrelevant in our problem, as expected). Geometrically, the

deformed rod is described by a curvature vector k − k0 which describes how a material frame

attached to a cross-section bends and twists relative to its intrinsic curvature k0, a local shear

vector σ − σ0 that describes the axial extension and planar shear relative to the intrinsic shear

σ0, a local centerline velocity v, and a local angular velocity w. The total energy of the rod is

then given by (29):

Ebend/twist =
1

2

∫ S

0

(k− k0)
TB(k− k0) ds

Estretch/shear =
1

2

∫ S

0

(σ − σ0)
TG(σ − σ0) ds

Etranslate =
1

2

∫ S

0

ρvTv ds

Erotate =
1

2

∫ S

0

wT Iw ds

(1)

where we have assumed a simple quadratic form for the potential energy terms and where S

is the total arclength of the rod, B is the local bending/twisting stiffness matrix, G is the local

shearing/stretching stiffness matrix, ρ is the mass per unit length, and I is the moment of inertia

of the cross-section. Our model used is similar, but not identical, to that described in (28);

in particular, we differ by accounting for the role of both extensional and shear deformations;

a complete description of this generalized theory will follow in a future paper. Although the

Hamiltonian above is quadratic, the resulting Euler-Lagrange equations are nonlinear owing to

the fact that we make no approximations in describing the curvature and torsion of the centerline

of the filament, both of which can be relatively large.

To make progress in solving for the shape of the composite filament, we discretize the

energy 1, describing the rod’s centerline by n+1 vertices connected by n edges, so that we can
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derive a discrete set of equations of motion for the vertices by using standard techniques from

the calculus of variations. The equations of motion are then integrated using a semi-implicit

Euler method, and the boundary conditions are explicitly applied at each time step. Since our

experiments were carried out quasi-statically, the effects of inertia were negligible so that we

used an over damped version of the equations of motion, since ρv2/Bk2 � 1, Iω2/Bk2 �

1. Furthermore, our filaments were very stiff in shear and extension so that we assumed that

B/σL2 � 1, and varied the ratio of the bending to twisting stiffness to mimic the role of aging

in the tendril.

To understand the mechanical response of a tendril with a perversion, we first constructed

one by clamping a naturally curved right handed helix to its mirror image, a left handed helix;

the internal clamping point constructed so as to have no intrinsic curvature. Next, the ends of

the rod were clamped (and unable to rotate) to supports that were pulled apart at a constant,

quasi-static velocity. This system has a natural symmetry about the perversion that effectively

reduces the problem into deforming a single helix with the mid point being an end that is free

to rotate but unable to translate in the axial direction. Thus, the mathematical significance of

a perversion is that it changes the effective boundary conditions for each of the constituent

helices by allowing them both to rotate about their point of chiral asymmetry and accommodate

the applied deformations by either over-winding or or unwinding depending on the ratio of the

bending to twisting stiffness of the filament.

Dimensionless force-extension curves

To compare between tendrils of different lengths and stiffnesses, and also to enable comparison

with our numerical data, we nondimensionalized the measured force-extension curves using the

following definitions. We nondimensionalized the axial displacement of the extended tendril by

defining the scaled displacement ∆l = (L − L0)/S as the instantaneous axial length L of the
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tendril relative to its relaxed axial length L0, divided by its total arc length S. Additionally, we

defined the dimensionless force F̃ as the force F measured for any given tendril or numerical

filament, divided by an arbitrary force constant F0. We chose F0 to be the force required to

initially deform the perverted segment of the young tendril (dotted red curve in Fig. 3A) by a

unit scaled displacement. That is, F0 is the initial slope ∂F/∂(∆l) of the force-extension curve

of the perverted segment of the young tendril.

Section 2: Calculations

Intrinsic curvature of a prestrained bilayer ribbon

In cucumber tendrils, we observe that coiling occurs as a result of the morphosis of the fiber

ribbon, a bilayer strip of long cells that extends along the entire length of the tendril. As one

layer of the ribbon shrinks relative to the other, the composite ribbon develops intrinsic curva-

ture. We have experimentally mimicked this process using prestrained bilayer rubber models

as described in the manuscript. Here we give expressions for the intrinsic curvature k0 of a

bilayer rectangular cross-section ribbon with prestrain induced by the differential shrinkage of

the constituent strips using expressions derived for the curvature of a heated bimetallic strip that

bends due to the differential expansion of its constituent elements by Timoshenko (30), which

we include here for completeness.

Consider two elastic ribbons of equal width t and heights h1 (lower red in Fig. S3) and h2

(upper blue in Fig. S3) that are combined to make a bilayer ribbon. The lower layer has Young’s

modulus E1 while the upper layer has Young’s modulus E2. The lower layer is first stretched

to a strain value of ε∗1 and is held in tension. The upper layer is not stretched, so that ε∗2 = 0,

and is permanently bonded to the lower layer. Then, when tension is released on the bonded

bilayer ribbon, it relaxes to its equilibrium configuration with strains ε1 and ε2 and curvature k0.

The value of the intrinsic curvature k0 is determined by the relative strain, Young’s moduli, and
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heights of each layer. Both force and torque are balanced in the bilayer ribbon when it is left

free, so that

F1 = F2 (Force balance)

F1h1/2 + F2h2/2 = k0(E1I1 + E2I2) (Torque balance)

where I1 = (
th3

1

12
) and I2 = (

th3
2

12
) are, respectively, the moment of area of the lower and upper

layers, and F1 = ε1E1h1t and F2 = ε2E2h2t are the forces in each layer. Finally, on the

interface where the layers are glued together, the total strain must be equal so that

ε∗1 + F1/E1h1t+ k0h1/2 = k0h2/2 + F2/E2h2t+ ε∗2

Solving the above system of equations for ε1, ε2, k0 yields (30)

k0 =
6(ε∗2 − ε∗1)(1 +m)2

(h1 + h2)(3(1 +m)2 + (1 +mn)(m2 + 1
mn

))
(2)

where m = h1/h2 and n = E1/E2. We see that the curvature is proportional to the difference

in the strain between the two strips and inversely proportional to the thickness of the composite.

Overwinding in the limit of infinite bending stiffness

Overwinding behavior can be intuitively understood in the limit of infinite bending stiffness

relative to twisting stiffness by considering the simple case of a single helix with N turns, pitch

p and radius r (Fig. S4A). This helix has uniform curvature k0 and twist w0 given by

k0 =
r

(r2 + (p/2π)2)

w0 =
p/2π

(r2 + (p/2π)2)

The arclength S of this helix is related to the pitch, radius, and number of turns by S =

N
√

(2πr)2 + p2 and its axial length L is given by L = Np. If this initial helix is slightly
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deformed to increase its axial length from L to L + δL without increasing its total arclength

S (ie. without stretching), we assume that it will take on a new helical shape with new pitch

p+ δp, radius r + δr, and number of turns N + δN . If the number of helical turns is held fixed

by extending the helix with both ends clamped, then δN = 0. In this case, the axial deformation

δL can be accommodated by changing the pitch and radius to reduce the curvature to k0 − δk,

ie. by flattening out the helix (Fig. S4B).

However, in the limit of infinite bending stiffness relative to twisting stiffness, the helix

curvature cannot change, so δk = 0. In this case, the axial deformation δL can still be achieved

by allowing one end of the helix to rotate, increasing the number of turns by δN . In this case,

the pitch and radius both change so as to maintain constant curvature k0, and the number of

turns increases correspondingly in order to accommodate the total helix arclength S given the

new pitch and radius (Fig. S4C). This increase in the number of turns is precisely what occurs

in the experimentally observed overwinding.

Condition for overwinding in a composite rod with finite bending stiffness

For helical filaments with finite bending and twisting stiffness, the effect of overwinding can

again be predicted for the simple case of a single helix, following Love (24), which we include

here for completeness.

Again we consider an initial helix with pitch p, radius r, and arclength S, but now the helix

has finite bending stiffness B and twisting stiffness C. A helix with pitch p and radius r is

equivalently defined by its pitch angle α = arctan(p/2πr), shown in Fig. S4. In terms of this

pitch angle and the arclength, the axial length of the helix is L = S sin(α). The helix can be
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described in cylindrical coordinates as

r(s) = r

θ(s) = s cos(α)/r

z(s) = s sin(α)

Here the radial coordinate is a constant r, the angular coordinate θ varies from 0 to ϑ =

S cosα/r at the other end, the vertical coordinate varies from 0 at one end to L at the other, and

N = ϑ/2π is the total number of turns in the helix.

We now consider small deformations of the helix due to a force F and torque τ applied

at both ends. In response to these, the helix will take on a new equilibrium shape, which we

assume is a helix with the same arclength S, but new pitch angle α+ δα and radius r+ δr. The

new shape is determined by the equations of mechanical equilibrium for force and torque:

F =
1

Sr2
[
δL(C cos2 α +B sin2 α) + 2πr δN(C −B) sinα cosα

]
τ =

1

Sr

[
δL(C −B) sinα cosα + 2πr δN(C sin2 α +B cos2 α)

]
where δN is the change in the total number of turns. Negative δN indicates unwinding, while

positive δN corresponds to overwinding. In order to determine whether overwinding occurs

when the helix is extended to length L + δL under only an applied axial force, we set the

applied torque τ = 0 and solve for δN and δL in terms of F , l, r, B, and C. With two equations

and two unknowns, we obtain the relations given in (24):

δL = Sr2(
sin2 α

B
+

cos2 α

C
)F

δN =
Sr

2π
sinα cosα(

1

C
− 1

B
)F

Since the helix pitch angle α is between 0 and π/2, the factor of sinα cosα is always positive.

Thus, this prediction for small deformations shows that the change in number of turns is positive

9



if the bending stiffness B is greater than the twisting stiffness C, and negative if B < C, con-

sistent with our observations of overwinding in cucumber tendrils and numerical simulations.

We note that since this linearized prediction assumes small changes in shape, it cannot quan-

titatively predict the eventual unwinding that is observed in the numerical simulations and the

experiments. Nevertheless, this simple calculation correctly predicts the qualitative behavior

observed for small extensions.

Section 3: Movie Captions

Movie S1: Time-lapse movies of tendril searching for a support and coiling

Movie S2: Drying and rehydrating a fiber ribbon

Movie S3: Drying and rehydrating a whole tendril

Movie S4: Unwinding of a physical model

Movie S5: Overwinding of a fiber ribbon

Movie S6: Overwinding in a physical model with ribbon on inside and wire on outside

Movie S7: Unwinding of a numerical filament

Movie S8: Overwinding of a numerical filament

Movie S9: Unwinding of a young cucumber tendril

Movie S10: Overwinding of an old cucumber tendril

Movie S11: Overwinding of a passiflora tendril
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Figure S1: Tendril climbing via helical coiling. Cross-hairs mark the initial position of the
shoot apex and highlight how tendril coiling winches the plant upward toward the support. Top:
The tip of the tendril initially wraps around and attaches to the supporting rod (Time = 0).
Middle: A helical perversion (arrow) initiates in the suspended tendril (Time = 120 minutes).
Bottom: The tendril shortens axially by coiling into a pair of helices with opposite handedness
connected by a helical perversion (Time = 390 minutes).
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Figure S2: Extracted tendril fiber ribbon cut lengthwise. The same fiber ribbon is progres-
sively cut lengthwise to yield narrower and narrower strips that retained the original shape.
Arrows indicate helical perversion in all panels. Left: The intact fiber ribbon. Middle: Result-
ing fiber ribbon from one lengthwise cut. Right: The fiber ribbon from the middle panel is cut
lengthwise again, yielding an even narrower ribbon with the same shape.

Figure S3: Prestrain in a ribbon bilayer causes curvature. (A) Two elastic ribbons of equal
width t and heights h1 (lower red) and h2 (upper blue) are combined to make a bilayer ribbon.
The lower layer is stretched to a strain value of ε∗1 and held in tension, while the upper layer is
not stretched, so that ε∗2 = 0. (B) When tension is released on the bilayer ribbon, it relaxes to its
equilibrium configuration with strains ε1 and ε2 and curvature k0.
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Figure S4: Intuitive geometric explanation of overwinding in the limit of infinite bending
stiffness. (A) A helix with pitch p, radius r, pitch angle α = arctan(p/2πr) and axial length L.
(B) A deformed helix with increased axial length L + δL, achieved by maintaining a constant
number of helical turns (ie. enforcing no unwinding or overwinding). (C) A deformed helix
with increased axial length achieved in the limit of infinite bending stiffness by maintaining
constant curvature k.
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Figure S5: Passiflora tendril anatomy and overwinding behavior. (A) Cross section of coiled
Passiflora sp. tendril. Gelatinous fiber (g-fiber) cells are present on the ventral side of the
tendril, ie. on the inside of the helix. (B) Magnified view of g-fiber cells. Artifactual detachment
of the gelatinous fiber from the secondary wall, as seen in panel B has been shown to be a
distinctive characteristic of g-fiber cells (17, 27). (C) A coiled Passiflora sp. is shown in its
relaxed configuration. When tension is applied, the tendril overwinds and adds additional turns
on both sides of the helical perversion.
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