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Abstract:  An optical coherence microscope (OCM) has been designed and
constructed to acquire 3-dimensional images of highly scattering biological
tissue.  Volume-rendering software is used to enhance 3-D visualization of
the data sets.  Lateral resolution of the OCM is 5 µm (FWHM), and the
depth resolution is 10 µm (FWHM) in tissue.  The design trade-offs for a
3-D OCM are discussed, and the fundamental photon noise limitation is
measured and compared with theory.  A rotating 3-D image of a frog
embryo is presented to illustrate the capabilities of the instrument.
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1. Introduction

We have constructed an optical coherence microscope (OCM) to image critical events in the
early development of plants and animals.  The spatial relationships between cells and groups
of cells are important in the development of tissue, so our OCM has been designed
specifically to produce 3-dimensional images that can be rotated on a computer screen to
achieve a 3-D perspective.  Volume-rendering software enhances this 3-D visualization.

Izatt et al. [1] have compared optical coherence microscopy (OCM) with optical
coherence tomography (OCT).  Both are noninvasive techniques for imaging objects
embedded up to 2 mm deep in highly scattering media, and both derive their depth resolution
from the short coherence length of the light source employed.  To achieve the higher
resolution of OCM (3 to 10 µm versus 10 to 30 µm), special effort is usually made to keep the
focused waist of the beam coincident with the equal path length position of the OCM
interferometer, thus preserving the lateral resolution throughout the depth of the sample.  At
least two groups of researchers have explored the use of OCM in developmental biology [2-3,
4-7].  Image visualization has primarily consisted of examining successive 2-D optical slices,
though occasional 3-D reconstructions have been made [6-10].  Even in the latter case, one
dimension in the 3-D reconstruction covers a shorter distance or has poorer resolution.  Our
data acquisition and visualization procedures are designed to acquire data of comparable
quality in all three dimensions and accentuate the 3-D structure of the tissue imaged.

The size of cells in developing plants and animals is typically 5 to 10 µm.  In an attempt to
resolve most cells, the beam in our OCM is focused to a waist of 5 µm (FWHM) which
determines the lateral resolution (see Figure 1).  To maintain this lateral resolution throughout
the depth of the image, we perform 2-dimensional en face scans (in the plane normal to the
beam axis) using a pair of galvoscanning mirrors.  After each en face scan, the depth is
incremented by moving the focusing lens while the position of the reference mirror is adjusted
to keep the equal path length position of the OCM interferometer coincident with the beam
waist.  This procedure maintains a 5 µm lateral resolution throughout the image.

The choice of en face scanning leads necessarily to one instrumental complication.  In
most OCM instruments, output fringes are produced by the movement of the scanning
reference mirror (see the reviews of OCT [11,12] ).  In our instrument, however, the reference
mirror remains essentially stationary during each en face scan.  We have found an inexpensive
way to generate high frequency (125 KHz) output fringes by modulating the reference path
length with small displacement oscillations (400 nm) of the reference mirror.  A small,
lightweight mirror is glued onto a piezo stack which is then driven at a resonance frequency
of the mirror/piezo system.  The high frequency of the reference mirror oscillation provides
for fast image acquisition (~ 5 minutes), and the small modulation amplitude (~ 1 fringe)
avoids degradation of the depth resolution.

Depth resolution in OCM is determined by the coherence length of the light source.  We
are using a superluminescent diode (SLD) with a center wavelength of 843 nm and a spectral



width of 21 nm (FWHM).  The resulting depth resolution (FWHM) is 15 µm in air or
approximately 10 µm in tissue (n ~ 1.4).  Since the modulation of the reference path length is
much smaller (< 0.5 µm), blurring of the image in the depth dimension is negligible.

The small phase modulation of the OCM interferometer does, however, lead to one
additional instrumental complication.  Temperature variations in the optical fibers of the
OCM interferometer lead to slow phase drifts (~ 15 seconds) in the output, which in turn lead
to slow drifts in the rms amplitude of the output fringes.  We have followed the lead of
previous researchers [1,13] in devising a measure of the fringe amplitude that is independent
of this slow phase drift.  The magnitude of the piezo-driving voltage is adjusted so that the
displacement amplitude of the reference mirror oscillation reaches an optimal value of 0.42 λ.
At this value the sum of the powers in the output fringe signal at the first two harmonics of the
piezo-driving frequency is insensitive to the slow phase drift.  We use the square root of this
sum of powers as a measure of fringe amplitude.

Fig. 1.  Optical schematic of the optical coherence microscope.

In Section 2 of this paper we describe more completely the technique for phase
modulation with the mirror/piezo stack system.  Details of construction are included, and a
quantitative analysis of the performance of the system is presented.  In Section 3 we describe
the fundamental photon noise limitation of the microscope.  To maximize the signal-to-noise
ratio, a neutral density filter is placed in the reference arm of the OCM interferometer to
reduce the Bose-Einstein photon bunching of the SLD source.  Finally, in Section 4 we
describe our procedure for visualization of the 3-D images and include a rotating image of a
developing frog embryo.

2.  Fringe generation with a piezoelectric stack

Piezoelectric crystals have been used in a variety of forms for phase modulation in OCM.
Our requirements, however, are unusual:  we need a modulation frequency above 100 KHz
for rapid image acquisition, a low amplitude of modulation to preserve depth resolution, and
for convenience we would like to drive the piezo with a standard function generator.  Izatt et



al. [1] attached an OCM reference mirror to a piezo stack and modulated with a low amplitude
(< 1 µm) at 1.6 KHz, too low a frequency for our criteria.  Other investigators have wrapped
optical fiber around piezo materials, stretching and relaxing the fiber to modulate the path
length.  For example, Tearney et al. [14] achieved a fringe frequency of 5 MHz by modulating
the reference path length by 3 mm, too large a modulation for our instrument.  Duncan et al.
[15] modulated the reference fiber length by a “few microns” and achieved a fringe frequency
of 300 KHz.  One problem associated with this technique is that the long lengths of fiber used
(tens of meters) result in increased phase drift in the interferometer.  Also, the longer fibers
increase static polarization mismatch and dynamic birefringence modulation [14].
Alternatively, fibers coated with piezoelectric films have recently been used [16].  When a
voltage is applied to the piezo jacket, the fiber is squeezed radially and thus increases in
length.  In this way, fast phase modulations can be achieved, but the modulation amplitude is
typically small.  In order to produce a change in optical path length of  1 µm at 100 KHz, a
fiber coated over a length of 20 cm would require more than 100 volts of driving amplitude.

Our final solution for phase modulation is both inexpensive and convenient.  A small
plane mirror (1.5 mm x 1.5 mm x 0.1 mm, from Edmund Scientific Co., Barrington, NJ) is
glued with cyanoacrylate (“super glue”) to a piezo stack (manufactured by NEC and available
from Thorlabs Inc., Newton, NJ, type AE0203D04, 2.5 mm x 5 mm x 5 mm).  The
mirror/piezo stack system is epoxied (F120, from Thorlabs Inc., Newton, NJ) to an aluminum
disk (25 mm diameter x 5 mm thick) which is then held in a mirror mount.  The mirror mount
is positioned so that the mirror lies in the focal plane of a lens, producing a cat’s eye
retroreflector in the reference arm of the OCM.  The piezo stack is driven at 125 KHz, a
resonance frequency of the stack (not of the aluminum disk/mirror mount).  A peak-to-peak
driving voltage of 6.7 volts produces a displacement amplitude of 400 nm, or roughly one
fringe at the OCM output.  The stack does not heat up noticeably during operation and has
proved to be remarkably stable over a year of nearly continuous operation.

While small modulations in the reference path length preserve good depth resolution in the
OCM, a significant problem arises from the slow thermal drift of the optical path lengths in
the interferometer reference and sample fibers.  The interferometer output fringe signal takes
on distinctly different shapes depending on the initial phase relation between the sample and

Fig. 2.  Phase dependence of the output fringe signal.



reference beams.  Figure 2 illustrates this point for a modulation of one-half fringe (piezo
displacement of  0.25 λ ).  Graph (a) in Figure 2 shows the piezo displacement d t0 sinω ,

where the peak-to-peak displacement  2do  is taken to be  0.25 λ.  The interference term in the
interferometer output intensity is given by

I I tout = +0 cos sinα ω φb g   (1)

where  α  is related to the piezo displacement amplitude by  α π λ= 4 0d / , and  Io  is equal to

2 I Iref samp  ,  where  Iref  and  Isamp  are the intensities returned from the reference and sample

paths.  Graph (b) in Figure 2 plots  Iout  for an initial phase difference between the sample and
reference beams of  φ = 0.  Graph (c) is a similar plot for  φ = π /2 .  The two signals are
clearly different in shape and have different Fourier components, including different DC
components.  In Graph (b) the strongest AC component is the one at  2ω, the second harmonic
of the piezo-driving frequency.  In Graph (c) the signal’s dominant Fourier component is the
one at ω, the fundamental of the driving frequency.  By inspection of the graphs, it also
becomes clear that the rms values for the AC-coupled signals are different.  (We must AC-
couple the interferometer output in our OCM to eliminate the huge DC component  Iref .)
Therefore random phase drifts between the sample and reference beams will lead to drifts in
the rms value of the AC coupled interferometer output.

To circumvent this problem, we have followed the lead of previous investigators [1,13].
Calculating the Fourier components of the signal in equation (1),  we can express the power
P1  in the fundamental frequency  ω  and the power  P2  in the second harmonic  2ω  as:

P I J1 0
2

1
2 22= α φb gsin   (2)

P I J2 0
2

2
2 22= α φb gcos   (3)

where J1 and J2 are the first and second order Bessel functions.  Thus the sum of the powers in
the first two harmonics  P1 + P2  is independent of  φ  only for those piezo amplitudes for

which J J1
2

2
2α αb g b g= .  The lowest value of  α  for which this occurs is  α = 2.63, leading to a

piezo displacement  2do  of  0.419 λ .  At this particular modulation amplitude, the sum P1+P2
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is independent of drifts in the pathlength difference between the two arms.  We are using the
square root of the sum as a measure of the AC-coupled interferometer output fringe
amplitude.

Figure 3 shows the experimental values for the powers of the interferometer output signal
in the first two harmonics as a function of the piezo driving voltage.  For each setting of the
driving voltage, the powers at 122 KHz and at 244 KHz were observed with a spectrum
analyzer as they varied with the drifting phase, and their maximum values are plotted.  The

solid and dashed lines indicate the best fits to the equations  P k J r x1 1 1
2

1= ( )   and

P k J r x2 2 2
2

2= ( )  , where  k1 , k2 , r1 , and r2  are fitting parameters.  As expected, the fitted
values of  k1  and  k2  were the same to within 1%, and the values of  r1 x  and  r2 x  at a piezo
voltage of  x = 5.95 volts peak-to-peak were within 1% of 2.63.  At this setting the sum of
powers  P1 + P2  was observed to be independent of phase drift.

3.  Fundamental photon noise limitations

The speed of image acquisition and the signal-to-noise ratio (SNR) in OCM are ultimately
limited by fundamental photon noise.  Ordinarily one would expect this noise to be Poisson
distributed, so that a stronger source provides a faster speed and greater SNR.  This is only
partially true.  Like Sorin and Baney [17], we have found that the SNR in our OCM is
improved by attenuating the power in the reference beam.  Typical SLD sources operate with
powers and coherence times that lead to photon noise dominated by Bose-Einstein photon
bunching.  Attenuating the reference beam power reduces the photon bunching and returns the
instrument to the regime of Poisson noise.  Of course an increase in the sample beam power
will increase the SNR when imaging biological tissue, but the reference power must not be
allowed to increase into the photon bunching regime.  While our results confirm those of
Sorin and Baney [17], we will use somewhat different language to describe this phenomenon
theoretically.

The coherence time of our SLD is τcoh = 60 fs, and the sampling time of the photodetector
electronics is T = 1.25 µs  (T = 1/(2 BW) where the bandwidth BW = 400 KHz).  The
variance of the number of photons collected in a sampling time is [18]

Var n n
n

N
( ) =< > +

< >2

  (4)

where N = T/τcoh is the (large) number of coherence times contained in the sampling time
(~107).  The first term on the right-hand side of equation (4) is the Poisson contribution and
the second represents the Bose-Einstein photon bunching.  Actually the SLD emits two
orthogonal, independent polarization states, so the variance becomes
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  (5)

The rms noise in the output of the photodetector electronics is primarily due to photon noise
in the reference beam, but the contribution of amplifier noise must also be included:

V g R NEP e
P
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Erms noise
ref ref

coh= ⋅ ⋅ +
L
NM

O
QP +

F
HG

I
KJ

L
N
MM

O
Q
PPb g2 2
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  (6)

where g is the transimpedance gain of the photodetector amplifier (105 V/A), R is the detector
responsivity (0.58 A/W), NEP is the noise equivalent power of the photodetector
(0.8 pW/ Hz ), η is the quantum efficiency of the detector (85%), e is the electronic charge,



Pref  is the reference beam power, and Eν is the energy of an 843 nm photon.  (Our
photodetector is a hybrid photodiode/amplifier from Advanced Photonix, Camarillo, CA,
Model SD 100-41-21-231.)  The first term in the square root is the amplifier noise, the second
is the Poisson term, and the third is the Bose-Einstein photon bunching term.

Measurements of the rms noise in the photodetector output voltage were made as a
function of reference beam power and are plotted in Figure 4.  The data is described well by
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Fig. 4.  Photodetector noise as a function of reference beam power.  A spectrum analyzer was
used to measure the photodetector noise (solid circles) at 122.5 KHz with a bandwidth BW =
3 KHz.  The theoretical curve (solid line) is calculated using this value of the bandwidth in
equation (6).

the theoretical expression in equation (6) with no adjustable parameters.  Notice that at the
highest reference powers the noise is dominated by photon bunching, and the rms amplitude
of the noise is proportional to the reference power.

The output signal of the OCM is the fringe amplitude.  Theoretically, when the reference
mirror is oscillated with a peak-to-peak displacement amplitude of 0.42 λ, and the square root
of the sum of powers in equations (2) and (3) is used as a measure of the fringe amplitude, the
OCM signal can be expressed as a detector output voltage:

V
eg P P

Erms signal

ref samp=
131. η

ν

  (7)

The OCM signal-to-noise ratio (SNR) is then given by the ratio of equation (7) to equation (6)
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  (8)

When Pref is large, the photon bunching term dominates the noise in the denominator, and the
SNR is inversely proportional to the square root of Pref .  Hence the SNR decreases with
increasing Pref .  On the other hand, when Pref is small, the amplifier noise dominates the
denominator, and the SNR is proportional to the square root of Pref .  The SNR then decreases
with decreasing Pref .  A peak in the SNR occurs when the photon noise is Poisson distributed.



We looked for this peak in the SNR by focusing the sample beam on the surface of a
mirror as neutral density filters were inserted into the reference arm of the interferometer.
Figure 5 contains a plot of the measured SNR as a function of Pref .  The data is well described
by equation (8) except for a multiplicative factor of 0.40.  This factor represents a reduction in
the heterodyne efficiency due primarily to polarization mixing in the optical fiber of the
interferometer.  The key result is that we obtain a 40% increase in the SNR by reducing Pref

by a factor of 4.  Of course, as is evident in equation (8), increasing the power in the sample
arm Psamp will also increase the SNR.
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Fig. 5.  OCM signal-to-noise ratio as a function of reference beam power.  The solid line is
calculated from equation (8) with no adjustable parameters.  The dashed line includes an
additional multiplicative constant of 0.40.

4. Image visualization

Previous researchers [6-10] have rotated and sliced 3-D OCM data sets along selected planes,
yielding a series of informative 2-D images.  Taken together, these 2-D images can provide
insight into the 3-D structure of the sample.  We have found, however, that the most effective
way to visualize a 3-D data set is to use a technique called volume rendering [19].

In the process of volume rendering, the volume elements (voxels) of the 3-D data set are
projected directly onto the 2-D pixels of the viewing screen (computer monitor).  For each
2-D pixel, a ray is drawn normal from the viewing screen to and through the sample image.
The contents of voxels lying along this ray are “blended” together to yield the contents of the
pixel.  This procedure can display inner structure such as translucent groups of cells.  It is
particularly effective when combined with real-time rotation of the viewing direction.

We use the visualization software package Visualization Express (Advanced Visual
Systems, Inc., Waltham, MA) to volume-render our 3-D data sets.  First we false-color each
voxel, assigning red to voxels that back-scatter light strongly, and blue to voxels that back-
scatter light weakly.  Then the Visualization Express “volume render” module uses the “direct
composite” algorithm to blend separately the red, green, and blue contents of voxels into RGB
values for pixels.  The essential calculation performed by the “direct composite” algorithm is

Pixel VoxelRGB n RGB n
n

= ∗∑α   (9)



where [PixelRGB] is the red, green, or blue value assigned to a particular pixel on the viewing
screen, [VoxelRGB]n are the red, green, or blue contents of voxels lying along the ray generated
by the particular pixel, and αn are the blending weights (sometimes called “opacity” values)
of the voxels.  The αn are uniquely related to the voxel contents and are typically taken to be
proportional to the greyscale voxel contents.  The voxel RGB contents, the αn, and the pixel
values are normalized to lie between 0 and 1.  The sum over n in equation (9) begins nearest
the viewing screen and proceeds into the sample image.  The sum continues until

α n =∑ 1 (10)

Small values of  the αn mean that many voxels will contribute to a pixel value, and the 2-D
image generated will contain information about the interior of the 3-D data set as well as the
surface voxels nearest the viewing screen.  Larger values for αn will yield a 2-D image that is
similar to a surface rendering of the data set.

Fig. 6.  First frame of the movie of a frog embryo at stage 41 of development.  The movie is
provided in two sizes: Fig6smal.mov is a 385 kB version with slightly lower resolution than
Fig6larg.mov, a 2.46 MB version.

To illustrate these visualization techniques, we include a movie that is a rotating image of
a frog embryo (Xenopus laevis).  The embryo was lightly fixed (2% paraformaldehyde
overnight at 4oC) at stage 41 of development (3 days, 4 hours old).  Figure 6 contains the first
frame of the movie.  The view is along the spinal cord, looking from the tail toward the head.
The dorsal side (back) is at the top of the figure, and the ventral side (belly) is at the bottom.
The beam is incident upon the left side of the embryo.  The false color red indicates voxels
from which a high intensity of back-scattered light was collected, whereas very little back-
scattered light was collected from blue voxels.  Notice the general attenuation of light as the
beam penetrates the embryo from left to right (red to blue transition in going from left to right
in the figure).  A typical total attenuation coefficient (scattering plus absorption) is 10/mm for
embryos in these later stages of development.  Voxels on the far right of the figure receive

Spinal Cord
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Notochord

350 µm

600 µmBeam



incident light that has been attenuated by a factor of roughly exp(3.5), and the light these
voxels back-scatter is further attenuated by exp(3.5) in traveling back through the embryo.

The spinal cord is a site of high cellular activity at this stage of development, and it
scatters light strongly.  (Note the shadow to the right of the spinal cord in Figure 6.)  On the
other hand, the notochord appears dark in Figure 6 because at this stage of development its
cells contain large vacuoles.  These vacuoles are volumes of water devoid of cellular
structures and back-scatter very little light.  In general we observe that regions with high
cellular activity scatter light strongly, providing a convenient intrinsic probe for critical events
in the development of organisms.

Figure 6 is a volume-rendered image of a 3-D region of the embryo that is 600 µm x
350 µm in the plane of the figure and extends 600 µm into the figure.  The αn (opacity values)
are set low so that the voxels deep in the 3-D image are contributing substantially to the
values of pixels in the figure.  The 3-D image has been carefully rotated to afford a direct
view down the spinal cord and notochord.  Rotation of just a few degrees about an axis
normal to the spinal cord quickly obscures the structural features that are so obvious at this
viewing angle.  The movie illustrates this effect as the 3-D image is rotated about a dorsal-
ventral axis.

The movie consists of one full rotation (360o) with low opacity values, yielding a
translucent, almost diaphanous view of the embryo.  These settings accentuate the structure of
the spinal cord and notochord.  The opacity values are then increased so that surface voxels
contribute more to the image, and another full rotation is performed.  These settings reveal
developing somites that form diagonal stripes (chevrons) in a side-on view.  The dark
melanophores (pigment cells) are visible in both opacity settings.

We have found that our 3-D OCM images contain useful information about dynamic
processes in developing organisms.  Our OCM image acquisition time of 5 minutes for a 106

voxel image is fast enough to follow events that occur on a time scale slightly longer than the
cell division time which can be as short as 10 minutes during embryogenesis.  In addition, the
proliferation of volume-rendering hardware for use in increasingly fast, inexpensive personal
computers bodes well for interactive 3-D visualization of OCM images in the near future.
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