| mprovements to an Optical Coherence Microscope

Through Digital Signal Processing

Tom Driscoll
Senior Thesis
4 May 2001

Physics Department, Harvey Mudd College

Advisors:
Richard Haskell

Dan Petersen.

Abstract

Our current optical coherence microscope (OCM) has been designed for imaging
biological samples. We wish to improve the speed, dynamic range, and signal-to-noise
ratio of our current instrument. We can achieve these goals by replacing the existing
analog signal processing circuitry with adigital processing (DSP) system. We describe
the design and performance of our DSP solution. As an added bonus, our solution offers
flexibility in the tradeoff between acquisition time and signal-to-noise ratio. The system
we implemented utilizesa 2.5 MHz 16-bit analog to digital converter and a 60 MHz
Innovative Integration processing board on which C language code runs. The essence of
our digital processing is apartial discrete Fourier transform performed by the C-code.
The finished digital system integrates very nicely with the existing OCM, and is a

valuable improvement to the instrument.

I ntroduction

History has shown us time and again that advancements in imaging technol ogy
have foreshadowed improvements in medical and biological technique. Early inthis
century, the invention and development of the x-ray alowed doctors to more accurately
judge bone breaks and later, with the development of computed axial tomography (CAT)
X-ray scans, to create 3-D images of the entire body. The latter half of this century has
been witness to an explosion of new conceptsin imaging. Of the many recent new
techniques, those that are not harmful to aliving sample, and can penetrate into an object
to produce a 3-D image are of the most interest in medical and biological areas.

Magnetic resonance imaging (MRI) is aready very widely used in medical and
developmental biology fields. Optical coherence microscopy (OCM) is quickly attracting
interest due to some of its advantages over MRI. While MRI allows for much larger scan
volumes and deeper scan depth than OCM, itsrestrictive costs and longer scan time are
making OCM a preference in many areas. OCM can aso achieve higher resolutions than
MRI can. Doctors are using OCM to give them information that once required invasive
surgery(1'3). Because the scan time for atypical 1mm? image is on the order of minutes,
developmental biologists can view cell divisions and other changesinside aliving
samplet*©,

Our optical coherence microscope [Fig. 1] has been designed asatool in
developmental biology. The microscope’s resolution is fine enough to distinguish

individual cellsof size5 umto 10 um. By focusing our 843 nm superluminescent diode

(SLD) source beam down to a full-width-half-maximum (FWHM) of 5 um, we are able

to achieve 5 um lateral resolution acrossthe XY plane. Depth (Z-direction) resolution is
constrained to 10 pum in tissue by the coherence length of our SLD. A modulating (at
122.3 kHz) reference mirror is used to produce fringes at the output of our interferometer
(19 "\We are able to circumvent the slow phase drifts inherent in an optical fiber
interferometer by summing the powersin the fringe signal at the fundamental (122.3
kHz) and first harmonic (244.6 kHz). Scan times for our OCM are around 6 minutes for

a1l million voxel image.

850 nm Single-mode Piezo-stack & Mirror
SLD Optical Fibers Lo
] P ans
He-Ne / oupler| ¥ L) Motorized
Alming Coupler Retroreflector
Beam / ﬁ
Photodiode o Galvo and
— I DC motor
ﬁl,:# 3-D Scanning
3
Amp Stage
Focusing Lens
Electrical &™) Sample
Filter L 1]
I
RMS | Computer
Voltmeter

Figure 1 — Schematic of the HM C OCM

The current OCM setup experiences limitations from the analog filter and root-
mean-square (RMS) circuitry. Aswell as limiting scan times, the analog setup offers
very little flexibility in scan options. We have designed and installed adigital signa

processing setup based on the following hardware and software components. A high-

speed analog-to-digital (A/D) chip gives us 16-bit sampling at up to 2.5 MHz. After
sampling, we perform a discrete Fourier transform (DFT). ThisDFT, aswell asall signal
processing and filtering, is then done digitally via software. To aid with computational
power, processing is done on a dedicated DSP board manufactured by Innovative
Integration. This board includes our A/D chip aswell asa 60 MHz Texas Instruments
microprocessor. By replacing the old analog section with adigital system, we should be
able to improve scan times for a1 million voxel image to below 1 minute. Digital
implementation will also drastically increase the dynamic range of our instrument by
eliminating the need for an analog root-mean-square chip. As an added bonus, the new
digital setup offersusflexibility in our scan parameters. By choosing to sample over
different durations, we can adjust the frequency bandpass of our digital filter. Longer
scans offer tighter frequency bandpass, and consequently, less electronic and photon
noise is allowed through the filter. Thisallows usto quickly and easily choose between a
rapid scan speed versus a narrow bandpass resulting in a better signal-to-noiseratio. This
isan invaluable option for a versatile instrument.

Section 1 of this report discusses the details of Optical Coherence Microscopy as
they pertain to our setup. Section 2 looks at the existing analog processing, and discusses
itslimitations. Section 3 presents our digital solution to these problems. In addition, the
reader may find the information presented in the appendixes a valuable tool in reading
thisreport. The appendixes are intended to document the details of technical phenomena
important to the design of our instrument. Especialy key is Appendix 1, which
familiarizes the reader with natural aspects of digitization. Relevant appendixes are

referenced throughout the paper at the appropriate points.

Section 1 —An Overview of Optical Coherence Microscopy

Optica coherence microscopy is atechnique that uses photon backscattering to
gain information about the structure of asample. In any situation, photonsincident on a
medium can do one of three things. The photons can be absorbed by the medium, they
can be scattered by the medium, or they can be transmitted completely through the
medium with no interaction [Figure 2]. Photons can be scattered in any direction,
including directly backwards (asis of particular interest to us). We can collect and
measure the intensity of these backscattered photons to find the backscattering cross

section at any given point (voxel) in the sample.

Iincomesg LGl

Do STl Tl]
lighi |

Irmrvarri Hmed! gl

Figure 2 — The Nature of Backscattering

To collect backscattered photons, we construct a setup based upon a Michelson
interferometer [Figure 3]. Light from a superluminescent diode (SLD) sourceis split by
abeam splitter into areference arm path and a sample arm path. The light in the sample
arm is directed through a focusing lens down onto the sample. By translating the position
of our focused beam waist relative to the sample (via galvoscanners), we can select a
specific sample point in the XY plane. The focusing lens also trandlatesin the Z
direction (toward and away from the sample) to set the depth of the focus beam spot. Our
resolution in the XY planeislimited by the diameter of the focused beam, and is around
5 um (FWHM). Depth resolution is determined by the coherence length [see Appendix 2
for details] of our SLD light source, which isaround 15 pmin air, or 10 pum in tissue.
The 3-D resolution volume around our sample point is called avoxel. We can create a 3-
D image of a sample by compiling measurements at many voxels. In our setup, we
sweep the x-position to make a row, then increment the y-position to make a plane of

rows, then step down in Z to take data in successive planes.

Optical Coherence Microscope

Basics Photodetector

Beamsplitter H

»
I » » %

‘ Superluminescent Diode

Reference
Mirror

/

4

Figure 3—Michelson Interferometer

Thelight in the reference arm of the Michelson interferometer isreflected from a
mirror mounted on a piezo stack in acat’ s-eye retroreflector [Figure 4]. Thedriven
movement of this mirror causes the path length of the light to change asa 122.3 kHz sine
with peak-to-peak amplitude 350 nm. This modulated light is then recombined with the
backscattered light from the sample that passes back up through the sample arm. The two
photon-streams interfere at the photodetector either constructively or destructively,
depending on the rel ative phase between the two - which is changing at 122.3 kHz due to
the modulation in the reference arm. The resultant photodetector output is a122.3 kHz
fringe sine wave [see Figure 5], with amplitude proportional to the square root of the
intensity of the backscattered light from the sample. We convert this fringe amplitude
into a DC voltage via analog circuitry, and this voltage is the output of our instrument.
Unfortunately, the actual photodetector signal is not smply a122.3 kHz sine wave.
Thereisnoise in the signal from different sources. We also have to take into
consideration sidebands [see Appendix 3] around the 122.3 kHz sine-wave which arise
due to amplitude modulation. These sidebands contain true signal information, and must
be included in our measurement. However, we want to exclude all frequencies aside
from our signal and sidebands, as it contains only white noise. Thisexclusion is done by
means of bandpass filtering. In the next section, | shall talk about the existing analog

noise filtering method — especially its design in relation to the nature of signal sidebands.

Phase Modulation at 125 KHz

Alommuam
[hzk

Piezo Stack
(2 X53% 5 nm)

2w = 1.4 mm
Hemm :-4'_._ E ——
L]

Lens

25 mum

Mirror
(1.5 % 1.5x% 01 mm)

25 mm —

5 mm

(Cat’s Eve Retroreflector

Figure 4 - Phase M odulation

Fringes at output of Michelson Interferometer

fringes at modulation
(fr’EQLIEnGy' of 122.3 kHz

Fringe amplitude
proporiional to
sqrt (Intensity of backscattered light)

Figure5 - 122.3 kHz Output fringes (for initial relative phase of zero)

Section 2. — Analog Signal Processing.

To get agood measurement of the backscattering cross-section at our sample
point (voxel), we must separate our signal from the background white noise. The
simplest way to do thisisto construct atwin-peak RLC bandpass filter with its peaks
centered around 122.3 kHz and 244.6 kHz. The first harmonic (244.6 kHz) isincluded to
reduce problems associated with phase wander. Thermal drifts of our interferometer lead
to undesirable phase wander via expansion and contraction in the optical fibers. Whittier
Myers (HMC '99) and others "® found that the sum of the powers in the fundamental
and first harmonics would be constant regardless of phase wander®. This twin pesk filter
lets through only those frequencies that contain signal, albeit it does let through the noise
at those frequencies. Rather than construct afilter with avery narrow bandpass, as might
seem appropriate, we want our filter bandwidth to also include the sidebands. The
locations of the sidebands are dependent upon the speed at which we scan [see Appendix
3]. We chose to construct our filter with a bandwidth of 9.5 kHz in the fundamental and
7.5 kHz in the first harmonic ©. After filtering, our signal passes through a root-mean-
squared (RMS) chip. The resultant voltage is the square root of the summed power in the
fundamental and first harmonic, and represents the square root of the backscattering
coefficient at our sample point.

This analog setup has severa limitations. The dynamic range of RMS chipsis
small (input voltages need to be in the range of roughly 50 mV to 2 V) © dueto the
nature of analog multiplication operations. The fixed bandpass circuit also restricts
severa aspects of operation. Because the total bandwidth has been built to be 17 kHz, we

just include sidebands for a scan speed of 2 minutes. If we scan slower than this, the

10

sidebands are closer to the center frequency, and our filter passes more noise than it has
to and we get a poorer signal-to-noiseratio. If we scan faster, the sidebands spread out,
and our filter begins cutting out sideband signal. When this happens, we begin to lose
information about changes in the backscattering cross-section. The restriction to asingle
scan speed is a shortcoming of our analog filtering design. We found that changing to
digital signal processing alleviates problems with dynamic range and static filter

bandwidth.

11

Section 3. - Digital Signal Processing.

The heart of our digital solution is the Innovative Integration M44 board with its
AlX module. The M44 board itself has a dedicated 60 MHz Texas Instruments
TMS320C44 processor. The AIX module contains a high-speed (2.5 MHz) 2 channel 16-
bit analog-to-digital chip. The amplified output from our photodector is sent directly to
the channel O digitizing input on the AIX module. We sample our input at 8 times our
signal modulating frequency, or 978.4 kHz.

Thisdigital signal is stored in a hardware buffer on the AIX module, which is
read out on command into amemory array. From here, processing is done by software.
C code is executed on the M44 board processor. The code first extracts the channel-0 16-
bit word from the paired 2-channel 32-bit word read from the hardware buffer. Then a
discrete Fourier transform (DFT) extracts those components of the signal around 122.3
kHz and 244.6 kHz [see Appendix 6 for C code].

The bandwidth of the DFT is primarily dependent on the total duration time of
sampling [see Appendix 1], which can be expressed as 1/NT where N is the total number
of samplesand T isthe sample interval. Because the position of sidebands [see Appendix
3] is also dependent on the scan speed, it is possible to set the total sampling duration
such that our digital bandpass will always just include the sidebands regardless of scan
speed. Thisis aremarkable improvement over the fixed bandwidth analog setup. In our
setup we have a sampling rate of 978.4 kHz, and 32 samples per 50 pusvoxel. A voxel
dwell time of 50 ps means that we will have amplitude modulation of period 100 ps.

Our sidebands will then maximally be at

+1/100 ys. =+ 10 kHz.

12

around both the fundamental and first harmonic. The bandwidth of our digital filter can
be found by dividing the nyquist frequency by the number of frequency information
points as

489.2 kHz / 16 points= 30.6 kHz.

This bandwidth is more than enough to include our sidebands.[see Figure 6].

978.4 kHz sampling
32 samples/voxel

30.6 kHz frequency bandwith

+10 kHz A

sidebands——__

.

122.3 244.6 366.7 489
frequency (kHz)

Figure6 - DFT bandwidth and signal sidebands. 50 psvoxels.

After the DFT has extracted the 122.3 and 244.6 kHz Fourier components, our
software squares the result from each frequency, sums the two together, and takes the
sgquare root of theresult. Thisresult isthe fringe amplitude as found from the power in
the fundamental and first harmonic. Thisisdirectly proportional to the square root of the

backscattering coefficient at our sample point (voxel). BecausethisRMS calculation is

13

donein digital, there are none of the dynamic range problems associated with an analog

RMS chip.

Timing.

The master timing and control of the instrument is ultimately controlled by a
LabVIEW VI running on the host Pentium Il computer. LabVIEW controlsthe AT-
MI10O-16X E-10 multifunction 1/0 board, which creates a number of waveforms used for
timing and control of the various aspects of the instrument. The steering of the focused
beam across the X-Y planeis controlled by galvoscanners, whose angular orientation is
determined by waveforms from the AT-MI10O-16XE-10 board for X and the AT-AO-6
board for Y. The positions of the reference arm mirror and the focusing lens are
controlled by dc-motor-translators. LabVIEW-controlled pulses from the AT-MIO-
16XE-10 board also mediate the interaction between the host computer and the operation
of the M44 board. Because the software running on the M44 board controls when the
AIX moduleis sampling the input signal, it isimportant that the M44 software knows
when the LabVIEW V1 is beginning each voxel. Thisis accomplished by means of an
external interrupt signal sent from the AT-M10-16XE-10 board to the AIX module on
connector P2 [see Figure 7 of the M44 board]. The AT-MIO-16XE-10 board generates a
short TTL-like pulse at the beginning of every voxel (called SCANCLK) [see Figure 8].
The software is constantly monitoring this SCANCLK, and when one is received, the
software reads out the datain the AIX buffer (from the last voxel) into an array, clearsthe
AlIX buffer, and begins sampling data for the current voxel. While the AIX issampling

for the current voxel, the software is performing the DFT and RMS calculations on the

14

previous voxel’s data. The result of these calculations is the voxel fringe amplitude, and
itisstored in an array in SRAM on the M44 board. During the processing, the software
continues monitoring the external interrupt. If another external interrupt is received
before the software has completed its cal culations, the next voxel has already started

before the softwareisready. In thisevent, an error islogged.

M44 & atx
connections
/00
[1
I AIX module insalled I
[\
pin 9 \\ I
P1 S J’
\\ / /101
J — e - - - - o— — o—
Vi 1 .
o /
v"“\ -‘~‘L empty module slot I /
4
in7 \ /
i b I i
JPLOVIPE @ e e e o —— — — — — / JP3
external T T T e /
interrupt

in
PCI connector

Figure 7—M44 board and ATX module.

Thisisthe essential speed limitation of our digital processing system — can the
software finish bleeding and clearing the AIX buffer, formatting the data array, and
calculating the DFT of that data array before the next voxel starts? Becauseit’s so
important to be sure that we're not introducing voxel errors at whatever scan speed we
choose, a great deal of time was spent looking at the timing of the code and its interaction

with instrument timing. Figure 8 shows the analog out waveforms produced by the AT-

15

MIO-16XE-10 board that are used to control the x and y galvoscanners. Figure 9 shows

both the external interrupt waveform as well as how long the sections of the code take.

Both figures are for 32 samples per voxel, with 50 ps voxels — but the hardware and

software configurations are easily variable for longer voxel dwell times.

Timing for Sawtooth-Type Driving

o) Using AT-MIQ-16XE-10 and AT-AO-6
Digital 10 Line 0|(DIOO0)
Q ms
Counter O
(GACTRO_OUYT)
1.3ms 2.6 ms 39ms 5Pms 65ms 78ms 9.1.,s 10.4 ms
Cqunter 1
(GPCTR1_0OUT)
3.2 ms 52ms 5.8 ms 7.8 ms 8.4 ms 10.4ms 11 ms
X-waveform
D 2.6 ms 5 ms 7.8 ms 10.4 ms
Y-ywaveform
2.6 ms 5 ms 7.8 ms 10.4 ms
apiog mpursesmeger | [|[[|[[| [I[[I[[I] [[[I[]]]
3.2ms 52ms 5.8 ms 7.8 ms 8.4 ms 10/4 ms

Figure 8 —=Timing Analog Waveforms.

16

32 samples

H“W“' Runtime = 41.6 us S I
Voxel period = 50.0 us e I
1E EE 13 |
n - "
z & Ly iE E !
R i3 -5 2 |
il P 1
Read out Eonver o
samplas MoRage sTay DFT :
B3pus B16pus 128 ps . |
36.5ps | |5u|ﬂ
0 us read in new samples = 32.7 us .}I
|
416 ps

Figure9. DFT version 3.3t Timing Diagram

Scan Speed Flexibility.

We have seen that avoxel dwell time of 50 ps allows us to perform a 32 sample
DFT within the time constraints. If we want, we can aso spend longer than 50 ps per
voxel and average out some of the photon noise. This alows usto take more than 32
samples per voxel. The runtime for the software scales linearly with the number of

samples - asis apparent in Figure 10.

17

» zofbeare nun time

] \E
350 - samples
-1 []
00
250 .
%)
=
o 200 -
£
p |
=
= 150
7 |
100
u
7 |
| |
50 u
| |
I:I T I T I T I T I T I 1
1] 1 100 140 200 250

number of sarmples

Figure10- runtimesfor different (samples/ voxel)

The position of the sidebands is also inversely linearly dependent on our voxel
dwell time. So if we decrease our scanning speed by the same factor we increase our
number of samples, our filter bandpass retains its proportionality with respect to our
sidebands. The net effect of scanning slower is that we have sidebands closer to our
center frequencies, and we have atighter bandpass that allows in less hoise — giving us a
better signal-to-noiseratio. The flexibility to select the tradeoff between scan speed and

signal-to-noise ratio is a significant advantage of our digital processing setup.

18

Appendix 1. Aspectsof Digital Signal Processing.

Nyquist frequency. For agiven sampling rate R, the highest frequency that can be
resolved in the digital informationis’2 R. Thisisknown as the Nyquist frequency [see
Figure 11]. This means that for usto just resolve our 244.6 kHz first harmonic, we must
sample at 489.2 kHz or higher. To include the first upper sideband on the first harmonic,
we must sample faster than 489.2 kHz. Our sampling frequency is 978.4 kHz, more than

covering the Nyquist requirements. Sampling at higher frequencies also reduces the

noise error associated with digitization.

2

i AN AN AN AN AN A\ AN
'| '|II (N |II I|II I||'|' |I IIlIII |
b/ */ ¥ *\// v 5\/ \/JI \/

time

Figure 11 - Nyquist frequency = ¥ sampling frequency.

Digital frequency combsand DFT bandwidth

The nature of a Fourier transform is such that two points in time space provide the
necessary information for one point in the frequency space. Thus when we take our set
of discrete information in the time domain and perform aDFT on it, the result is a set of

discrete information in the frequency domain. The set of frequency information points

19

gpans from 0 Hz (DC) to the Nyquist frequency. The points of this frequency comb are

evenly spaced, so the distance between each frequency point can be found as:

Wy = L/NT = 1/T = 5ampling Frequency

N Number of Samples

In our setup, this gives us a comb bandwidth of 30.6 kHz. Theresult isadivision of
frequency space like the one shown below [see Figure 12]. Our filtering is done by
including the information in certain bands, and excluding others. The grey areas show
the bandwidth that is allowed through filtering. Included in red are the sidebands for a

50us voxel dwelltime.

978.4 kHz sampling
32 samples/voxel

30.6 kHz frequency bandwith

+10 kHz A

sidebandS——__

~

122.3 244.6 366.7 489
frequency (kHz)

Figure 12 - DFT bandwidth with sidebands

20

Appendix 2. On Coherence Length.

Light arrivesin wave packets whose temporal duration isinversely proportional

to their frequency bandwidth as.
Av = 1nt ™
Thisis a phenomenon we expect from knowledge of Fourier series. We know that the
atoms responsible for the electron transitions that emit our photons are undergoing
random thermal motion. When these atoms collide with other atoms, they suffer
interruptions that lead to discontinuities in the wavetrain. Thus, successive wave packets
will not necessarily have reliably similar phases. Thus, if the average duration of asingle
wave packet istc, two points on a waveform that lie greater than t. away from each other
must be on separate wave packets, and cannot be assumed to have definite relative phase.
This coherence time t directly relates to a coherence length through the speed of the
wave as.
le=ct,

Thusin our interferometer, if the path difference between the reference and samplearmis
greater than the coherence length of our SLD source, the relative phase of wave packets
arriving from one arm will be statistically uncorrelated to the phase of wave packets
arriving from the other arm, and the two will not coherently interfere to produce fringes.
The bandwidth of our SLD source is approximately 20.7 nm FWHM. Thisresultsin a

coherence length of approximately 15 umin air. This coherence length is the primary

determining factor in our depth resolution. Once the beam waist is set to a certain sample

21

depth, the reference arm retroreflector is translated such that there is zero path length
difference between the two arms. Thus photons backscattering from more than the
coherence length before or after the beam waist will not interfere with the light from the

reference arm, and so will not contribute to fringe amplitude.

22

Appendix 3. Sidebands

If our backscattering cross-section is constant across a scan, the only components
of our signal we need be concerned with are at 122.3 and 244.6 kHz. However, if the
backscattering index varies, the amplitude of the OCM output fringe signal varies. In
frequency space, a constant amplitude sine wave has components only at its center
frequency. But if the sine wave' s amplitude starts changing in time, it introduces new
frequency components called sidebands. The location in frequency space of these
sidebands depends on how quickly the amplitude of the sine waveisvarying. Inour
case, we know the maximum rate of change of our sine wave' s amplitude. For purposes
of sideband cal culation, we assume that in our sample we will alternate between sample
points of high backscattering and sample points of low backscattering. Thisisaworst
case scenario leading to highest frequency sidebands. The position of these primary
sidebands is + the frequency of amplitude modulation [see Figure 13].

To give an example [Figure 13], we have chosen our voxel dwell time to be 50
us. This corresponds to an amplitude modulation period of 100 us, which isan
amplitude modulation frequency of 10 kHz. We will thus find our primary sidebands at

122.3 kHz + 10 kHz, and also at 244.6 kHz + 10 kHz — asisillustrated below.

23

100 us period

xLll-' :

High Scattering High Scattering

Leadsto sidebands

112.3 1223 4323 234.6 2448 2546
frequency (kHz)

Figure 13 — Sidebands

24

Appendix 4: Testing Setup

The test setup for debugging and timing the code simulated the instrument inputs
to the computer. | used two Hewlett Packard function generators, one to create a
simulated SCANCLK external interrupt, and one to create a 122.3 kHz pure sine wave to
simulate afringe signal. | input the 122.3 kHz simulated signal in pin 9 and pin
1(ground) of P1, one of two fifteen pin connectors on the back of the M44 board [see
Figure 7]. The external interrupt was wired to P2 between pins 7 and 15 (digital ground)
inasimilar manner. By increasing the speed of the simulated external interrupt coming
from my function generator, | was able to determine the fastest external interrupt (at a
given number of samples) for which the code would not yet begin to report that it was
receiving the next external interrupt before it completed running [see Appendix 5 for
timing diagrams]. Also of interest is the fact that after reading and clearing the A1X
FIFO, it takes longer to read in the new samples than it does to compl ete the rest of the
software processing. This meansthat as we steadily increase the external interrupt
frequency we will notice adrop in the mean voxel intensity before we begin to see voxel
overtime errors. Thisis because we are cutting short the AlX sampling, leaving 0-values
as severa of the last samples. In my timing, | measured both the time it takes to
complete each section of the signal processing code as well as the point at which we start
cutting short the A1X sampling. We can be sure then that if we are scanning with voxel
dwell times longer than the runtimes indicated in Appendix 5, we will avoid voxel

overtime errors, and ensure ample time to complete sampling.

25

Appendix 5— Code Timing Diagrams.

32 samples
U“m" Runtime = 41.6 us E. I
Voxel period = 50.0 us pe I
2 EE 28
S B iy
B - 1 R
Riead out
sampies [cageaney| DFT :
B.3pus | B.16 s 128 us , |
36.5ps | Iﬁﬂua
0 s read in new samples = 32.7 ps [}I
|
41.6 ps
40 samples
|:|-uuu Runtime = 52.8 pus E |
o
n |
1I-II !u.. " g
E-ﬁ‘] E'-E |
'k % % 7% 2 |
i - P8 ¥ |
Anxbieed | cmgearss| DFT |
Mus |104ps | 147ps :
435ps
0 s read in new samples = 40.8 us {}I
I
52.8 us

26

48 samples

D.q.u_u Runtime = 61.4 us E |
o I
B8R ER 2 |
zk if 1¥ E |
R 2% 1 |
3 - vt E |
ot gl - DFT |
123 pus 13.5 us 704 |
50.0 ps |
Dys read in new samples = 49.06 us {}1'
1.4 ps
56 samples
|:|-1J:ﬂ|.|l HHI"I'I]I'I'I!=?2|,|§ E- |
! Ii I
i BB :4 |
11 8 1 ¥ |
g5 53 2% ,
K 58§ |
—oss | mgearer DFT I
139 us 14.7 s 20.4 ps |
57 us :
0 ps read in new samples = 57.2 us [J
|
T2 s

27

|||||||||| ..HF|
3
1 1 = Y qui 804 PRl]
&), = ju) pon puy [t
W), = ke
k-
g Lo S
: R
35 3
E
i ;
: tH :
- =
E
H_H_Hulmwm
. ise
w e . — E
= LU T T s =

833 s

|||||||| _-——_-=-

=
=
[.
1l § g = Beg qu oy PR =
L R T T —
W) w i
=1
£ el @
1 agl 8
m 1]
mﬂ S
£ :
85 5
Ng of o
=
HE 3
D e KT
Eulir._.qu|mm_u.
. HE
-4
N Odiddomyy — =
— Tl &

163 us

28

51 1°E = Bey qu psoy pes

E) = U oS P
LUt

324.6 us

256 samples
Runtirme
DOMAAT B
vl amay
66 ps

216.4 ps

261.6 s

read in new samples

Ol e

oasmom sy | wm

63 s

4,08 s

il o S

i = R g

Dy

324.6 ps

29

/1

/1

Appendix 6 — Software Code.

DSP33t . ¢

This program controls the Mi4 digital signal processing board including

its Al X anal og-to-digital conversion nodule. It initializes all relevant
hardwar e devi ces and begi ns sanpling, processing, and transferring data to
the host PC upon recognition of the receipt of a hardware-generated interrupt
(SCANCLK) fromthe National |nstruments AT-M O 16XE-10 board

This program nust be conpiled for the Texas |nstruments TMS320C44 processor
using the Texas Instrunments C conpiler version 5.1 or higher. The conpiled
and |inked COFF???? output file nust be downl oaded to the Mi4 board using
the program Term nal . exe supplied by Innovative Integration

or using the Downl oad_to_M4.vi LabView VI

Ver si on
Ver si on
Ver si on

created 7/8/1999 by Wittier Mers
revised 7/9/1999 by Aaron Boyer
revised 7/12/1999 by Aaron Boyer
Ver si on revised 7/15/1999 by Aaron Boyer and Wittier Mers
Ver si on revised 7/15/1999 by Aaron Boyer and Wittier Mers
/1 ThIS version is partially optimnmi zed for speed and works.
Version 3.0 revised 7/22/1999 by Aaron Boyer
/1 This version is partially optim zed for speed, and includes
/1 working host-target communication
Version 3.1 revised 7/26/ 1999 by Andrew Harrington
/1 This version puts g_plane_of _voxel _intensities[] into V44 G obal RAM
/1 and fixes target-to-host transfer of the array.
/1 Aaron's note on version 3.1: naking g _plane_of _voxel _intensities
/1 a pointer and assigning it to the first address in gl obal menory
/'l caused it to overwite other variables in global nenory when data
/1 was directly stored in that, or subsequent addresses (see nenory
/'l notes bel ow).
Version 3.2 revised 7/27/1999 by Aaron Boyer
/1l This version features fully optimzed DFT code, and makes
/1 g_plane_of voxel _intensities an array again.
Version 3.3 revised March and April, 2001 by Tom Driscoll and Ri chard Haskel
/1 This version fine tunes verion 3.2, elimnating erratic behavior
/1 during testing and timing of the code. Comments were cleaned up
/1 and some historical debris was elimnated. Some corrections were
/1 made to the statistical function which is useful during testing
/1 W note that during timng of the code the first indication that the
/1 external interrupts are too closely spaced in tine is that a voxel val ue
/Il is reported as (oddly) low This is because there is insufficient tinme
/!l to acquire the last Al X sanple - instead the sanple is taken as zero
/1 because the FIFO was cl eared during the previous readout. Wen the
/1 external interrupts are even nore closely spaced in time, the DFT does
/1 not have time to execute and the failure counter is incremented and
Il reported

NNREPRRE
RPONRO

A few notes on style: functions are CapitalizedUnspaced, error codes are
Capi tal i zedUnspaced, variables are | owercase_underscore_spaced

gl obal variables begin with "g ", function input variables begin with
"in_", and function output variables begin with "out "

Menory notes

Because this version uses a |large value for MAX_ SAMPLES PER VOXEL, it nust be
linked with a large stack size, |ike 0x2000 (hex 2000 = deci nmal 8192)

** This version is linked with all variables placed in global nenory. **

#i nclude "c:\md4cc\include\target\stdio.h"
#i nclude "c:\mi4cc\incl ude\target\periph.h”
#include "c:\fltc\include\nath. h"

#i ncl ude "c:\ OCMDSP\ DSPEr r or Codes. h"

#define Pl 3.14159265359
#defi ne VOLTAGE_SCALAR 8. 63167457503e-5

/1 This value is sqrt(2) * [(2 volts) / (27215 AlX units)]. It is used

30

/1 to convert the ALX A/Dinteger result to an rns voltage. Note that
/1 The Al X nodul e converts the maxi mum +- 2 Volt signal (4 Volt
Il peak-to-peak) to the maxi mum 16 bit signed integer (2715 with the
/1 appropriate sign in the sixteenth bit). The sqrt(2) converts to an
/1 rms val ue.
#define __INLINE static inline
#defi ne Pl EZO FREQUENCY 122300 /1 This is the piezo driving frequency in Hz.
#defi ne VOXELS_PER_PLANE 10998 /1 A plane is 100 by 100 voxels, with 10 extra
/1 y rows on the top to nake sure that
t he
/'l gal voscanners are functioning
appropriately.
#def i ne MAX_SAMPLES_PER VOXEL 1024 // This is the naxi num nunber of sanples per
/1 voxel the programis designed
to handl e.

/1 These next two constants set g_sanpl es_per_pi ezo_period and

/1 g_piezo_periods_per_voxel (declared below). Eventually, LabView will be
/'l passing the values for those variables instead of having them set by these
/'l constants.

#def i ne SAMPLES_PER Pl EZO PERI OD 8

/1 This is the number of sanples we take per piezo period.
#def i ne Pl EZO PERI ODS_PER VOXEL 4

/1 This is how many piezo periods we sanpl e over.

/1 The next four constants are involved in the DVA transfer of
/1 g_pl ane_of _voxel _intensities[] to the PC.

#defi ne OQUTBOX 0 /1 Qut mail box of M4.

#define | NBOX 1 /1 I'n nmail box of M4,

#defi ne DMA_CHANNEL O /1 Channel for DVA transfer.

#define FLAG 0x01 /1 This code is sent by the LabVIEWWVI .
#define DONE Ox11 /1 This code is sent by the M4 on conpletion

/1 of the DVA transfer.

float g_plane_of _voxel _intensities[VOXELS_PER_PLANE] ;

/1 This is an array in which to store the voxel intensities

/1 for the current scan plane. It will be of size VOXELS PER PLANE.
unsigned int *g_pc_shared_nenory_buffer;

/1 This is the address in PC RAMinto which the Mi4 will

/1 transfer the plane of voxel intensities.

unsigned int g_external _interrupt_bit;
/1 This will be used to store the bit nunber which corresponds
/1 to the external interrupt we're using.

unsigned int g_host_interrupt_bit;
/1 This will be used to store the bit nunber which corresponds
/! to the host-generated interrupt we're using.

/1l These next three global variables are initialized by calling

/1 InitializeSineTables(). Currently, these values are set to the sane val ues
/1 as the #define constants above. Eventually, we want these values to be

/1 paraneters passed from LabView to the DSP.

unsi gned int g_sanpl es_per_pi ezo_peri od;
/1 This is the nunber of sanples we take per piezo period.
unsi gned int g_piezo_periods_per_voxel ;
/1 This is how many piezo periods we sanpl e over.
unsi gned int g_sanpl es_per_voxel = SAMPLES PER Pl EZO PERI OD * PI EZO PERI ODS_PER_VOXEL;
/1 This is the total nunber of sanples per voxel.
float g_voltage_scal ar;
/1 W set this value equal to VOLTAGE_SCALAR / g_sanpl es_per _voxel
/1 in InitializeSineTabl es.

float g_sine_fundanmental _tabl e[MAX_SAMPLES_PER_VOXEL] ; /'l These four arrays
float g_cosine_fundanental _tabl e[MAX_SAMPLES PER VOXEL]; // will be sine and

float g_sine_first_harnonic_tabl el MAX_SAMPLES PER VOXEL] ; /1 cosine tables for
float g_cosine_first_harnonic_tabl el MAX_SAMPLES PER VOXEL] ; /1 use in the discrete

/1l Fourier transform

31

voi d Statistical Anal ysi s(void);
/1 This function perforns statistical analysis of the data produced
/1 by the board for testing purposes.
voi d ReportError(int in_error_code);
/1 This function reports a fatal error to the user. It currently
/1 calls printf to wite the error nunber to the console.
void Initialize(void);
/1 This function is called at the beginning of the programto perfom
/1] initialization.
void InitializeSi neTabl es(unsigned int in_sanples_per_piezo_peri od,
unsi gned int in_piezo_periods_per_voxel);
/1 This function builds the sine and cosine tables for both the
/1 fundanental frequency and the first harnonic.
/1 in_sanpl es_per_piezo_period and in_pi ezo_periods_per_voxel have
/1 the same values as their global variable counterparts above. The
/'l sine tables have the size
/1 in_sanpl es_per_piezo_period * in_piezo_periods_per_sanpl e;
/1 this value should not be | arger than MAX SI NE_TABLE LENGTH.
int ReadExternal I nterruptFlag(void);
/1 This function reads the current state of the external interrupt
/Il flag.
i nt ReadHost Mai | boxFl ag(voi d);
/1 This function reads the current state of the host mail box flag.
voi d Reset External I nterrupt Fl ag(void);
/1 This function resets the external interrupt flag to its
/1 untriggered state.
voi d Reset Host Mai | boxFl ag(voi d);
/1 This function resets the host mailbox flag to its untriggered
/1 state.
voi d Convert Al XBuf f er ToFl oat Array(unsi gned int in_g_sanpl es_per_voxel,
unsigned int* in_aix_buffer, float* out_converted_ai x_data);
/1 This function takes the first 16 bits of each value in
/1 in_aix_buffer and converts it into a floating point val ue.

/1 in_sanpl es_per_voxel -- the nunber of sanples we want to read fromthe
/1 aix buffer

/1 in_aix_buffer -- the raw output from Al X bl eed_fifo()

/1 out_converted_aix_data -- outputs the float values of the Al X

/] data

voi d SendPl aneToLabviewint in_error);
/1 This function uses DVA to send a finished plane scan to LabVi ew.
/1 1f inError reports an error, the program should indicate to
/1 LabView that sonething is wong.

fl oat ReadAndProcessVoxel (void);
/1 This function processes a single voxel by reading buffered data
/1 fromthe Al X nodule, restarting the Al X s sanpling, and perfornng
/'l a partial discrete Fourier transformon the data to find the
/1 power in the fundanmental piezo frequency conponent and the first
/1 harnoni c frequency conponent. It returns the voxel's intensity

__INLINE void Statistical Anal ysi s(voi d)
{

/1 Declare vari abl es:

float sort_sw tcher;

int sort_checker;

float sig fig_checker;

float sorted_pl ane[VOXELS_PER PLANE] ;
float mean_val ue = 0;

int array_index;

int count;
int mn_voxel _i ndex, max_voxel _i ndex;
float m n_voxel _value = 100, nmax_voxel _val ue = -100;

/1 Find and print the nean value of the data set, and prepare
/1 the data set to be sorted:
for (count = 0; count < VOXELS PER PLANE; count ++)

{

32

mean_val ue += g_pl ane_of _voxel _intensities[count];
sorted_pl ane[count] = g_pl ane_of _voxel _intensities[count];

}
mean_val ue = nmean_val ue / VOXELS_PER _PLANE;

printf("mean voxel value is: %\n", nean_val ue);
printf("second voxel contains: %\n\n", g_plane_of_voxel _intensities[1]);

/1 Find mn_voxel _i ndex and max_voxel _i ndex by stepping through the voxel array.
for (count = 0; count < VOXELS PER PLANE; count ++)

if (g_plane_of _voxel _intensities[count] < min_voxel _val ue)

m n_voxel _val ue
m n_voxel _i ndex

g_pl ane_of _voxel _intensities[count];
count;

if (g_plane_of _voxel _intensities[count] > nmax_voxel _val ue)

max_voxel _val ue = g_pl ane_of _voxel _intensities[count];
max_voxel _i ndex = count;

}

printf("mn_voxel _index is: %\t mn_voxel_value is: %\n", mn_voxel _index,
g_pl ane_of _voxel _intensities[m n_voxel _i ndex]);

printf("max_voxel _index is: %\t max_voxel value is: %\n\n", nmax_voxel _i ndex,
g_pl ane_of _voxel _i ntensities[max_voxel _i ndex]);

/1 Sort the data set fromleast to greatest:

sort _checker = 1;
whil e (sort_checker !'= 0)

{
sort_checker = 0;
for (count = VOXELS PER PLANE - 1; count > 0; count--)
if (sorted_plane[count] < sorted_plane[count - 1])
{
sort_sw tcher = sorted_pl ane[count];
sorted_pl ane[count] = sorted_pl ane[count - 1];
sorted_pl ane[count - 1] = sort_swi tcher;
sort _checker ++;
}
}
}

/! Display the results of the sort:
array_i ndex = 0;
sig_fig_checker = nmean_val ue - (mean_value / 100);
while (sig_fig_checker > sorted_plane[array_index])
array_i ndex++;
printf("%l voxels were nore than 1 percent bel ow the mean.\n", array_index);
array_i ndex = VOXELS PER PLANE - 1;

sig fig_checker = nean_val ue + (nmean_value / 100);
while (sig_fig_checker < sorted_plane[array_index])
{

array_i ndex--;

printf("%l voxels were nore than 1 percent above the mean.\n\n",
VOXELS_PER _PLANE - 1 - array_index);

array_i ndex = 0;
sig_fig_checker = nmean_value - (mean_value / 1000);
while (sig_fig_checker > sorted_plane[array_index])

array_i ndex++;

printf("%l voxels were nore than 0.1 percent bel ow the nean.\n", array_index);

33

array_i ndex = VOXELS PER PLANE - 1;

sig _fig_checker = nean_value + (nmean_value / 1000);

while (sig_fig_checker < sorted_plane[array_index])
array_i ndex--;

printf("%l voxels were nore than 0.1 percent above the nean.\n\n",
VOXELS_PER _PLANE - 1 - array_index);

array_i ndex = VOXELS PER PLANE * 0.5;
printf("median value: %\n\n",
(sorted_pl ane[array_i ndex] + sorted_plane[array_index - 1]) * .5);

printf("mn value: %\n", sorted_plane[0]);

array_i ndex = VOXELS_PER PLANE * . 25;
printf("25 percent: %\n", sorted_plane[array_index]);

array_i ndex = VOXELS PER PLANE * . 4;
printf("40 percent: %\n", sorted_plane[array_index]);

array_i ndex = VOXELS PER PLANE * . 6;
printf("60 percent: %\n", sorted_plane[array_index]);

array_i ndex = VOXELS_PER PLANE * .75;
printf("75 percent: %\n", sorted_plane[array_index]);

printf("max value: %\n\n", sorted_plane[VOXELS PER PLANE - 1]);

}
__INLINE void ReportError(int in_error_code)
printf("Error %l occurred.\n",in_error_code);
whi | e (TRUE)
/1 Do nothing so the user can see the error nessage.
}
}

__INLINE void Initialize(void)

float dds_clock_frequency = Pl EZO FREQUENCY * SAMPLES PER Pl EZO PERI OD * 8;
/1 This variable is used below to set the tinebase of the DDS cl ock,
/1 the tiner for the Al X

//disable_interrupts(); Do we need this command?????? | don't know
/1 This function causes the mi4 to cease responding to processor
/Il interrupts. It is called fromchip.h, which is included in

/1 msc.h, which is included in periph.h, which is included above.
Reset Host Mai | boxFl ag() ;
InitializeSi neTabl es(SAMPLES_PER_PI EZO PERI OD, Pl EZO _PERI CDS_PER_VOXEL) ;

/1 g_plane_of _voxel _intensities = (void *)(&Periph->d obal Ran{0]);
/1 Point voxel array to base of d obal RAM

ti nebase(DDS_TI MER, dds_cl ock_frequency, DDS_TI MEBASE) ;
/1 This sets up the AIX s tiner.

Al X _gate(0, OFF); /1 This gates OFF all FIFO buffers,

/1 preventing the storage of sanples.
Al X reset _fifo(0); /1 This resets the FIFO buffers on the Al X

/! rmodule installed on site O.
Al X _enabl e_fifo(0, 0, ON); /1 This starts sanpling on Al X channel pair O.

/1 The Al X nodule is on site 0 on the M44

/1 board.

Al X _gate(0, ON; /1 This gates ON all FIFO buffers,

}

__INLINE void InitializeSineTabl es(unsigned int

i n_pi ezo_peri ods_per_voxel)

/1 enabling the storage of sanples.

i n_sanpl es_per_pi ezo_peri od,

unsi gned int

int count;

g_sanpl es_per _pi ezo_period = in_sanpl es_per_pi ezo_peri od;

g_pi ezo_peri ods_per_voxel = in_piezo_periods_per_voxel;

g_sanpl es_per_voxel = g_sanpl es_per_piezo_period * g_pi ezo_peri ods_per_voxel;

g_vol tage_scal ar = VOLTAGE_SCALAR / g_sanpl es_per_voxel ;
/1 g_voltage_scalar will be used in ReadAndProcessVoxel !

if (g_sanpl es_per_voxel > MAX_SAMPLES PER VOXEL)

Report Er r or (ERR_naxSanpl eSequencelLengt hExceeded) ;

}

/1 Fill the sine tables:

for (count = 0; count < g_sanpl es_per_voxel;

{

g_cosi ne_fundanent al _tabl e[count] =

count ++)

cos(2.0 * Pl * count / g_sanpl es_per_piezo_period);

g_si ne_fundanental _tabl e[count] =

sin(2.0 * Pl * count / g_sanpl es_per_piezo_period);

g_cosine_first_harnoni c_tabl e[count]

cos(4.0 * Pl * count / g_sanpl es_per_piezo_period);

g_sine_first_harnoni c_tabl e[count] =

sin(4.0 * Pl * count / g_sanpl es_per_piezo_period);

}
}
__INLINE int ReadExternallnterruptFl ag(void)
return Pol | I nterrupt (ElI NT2_I NTERRUPT) ;
}

__INLINE i nt ReadHost Mai | boxFl ag(voi d)
{

int host_nessage;

return(read_nb_t erm nat e(&ost _nessage, 0, | NBOX)

}

__INLINE voi d Reset Ext ernal I nterruptFl ag(voi d)
Cl ear I nterrupt (El NT2_I NTERRUPT) ;

}

__INLINE voi d Reset Host Mai | boxFl ag(voi d)
cl ear _mai | boxes();

}

__INLINE voi d Convert Al XBuf f er ToFl oat Array(unsi gned int

== FLAQ);

i n_sanpl es_per_voxel ,

unsigned int* in_aix_buffer, float* out_converted_ai x_data)

Al O PAIR *typecast _ai x_buffer_pointer = (AlO_PAIR*)in_aix_buffer;
/1 Change the type of in_aix_buffer so we can access it as two

/1 signed 16 bit integers. Wen optim zed,

35

this should not generate

/1 an extra instruction.
float *converted_data_pointer = out_converted_ai x_dat a;

int count;
for(count=i n_sanpl es_per_voxel - 1; count >= 0; count--)
{
*out _converted_ai x_data = typecast_ai x_buffer_poi nter->hal f.| ow,
/1 Convert the low 16 bits of in_aix_buffer[count] into a
/1 signed integer, then into a floating point val ue.
/1 ALO PAIR is declared in AdD4.h
out _converted_ai x_dat a++;
typecast _ai x_buf f er _poi nter ++;
}
}
__INLINE void SendPl aneToLabview(int in_error)
{
Reset Host Mai | boxFl ag() ;
write_mail box(VOXELS_PER_PLANE, OUTBOX);// Send array size to PC via mail box.
g_pc_shared_nmenory_buffer = (unsigned int *)read_nail box(lNBOX);
/] Receive address of PC shared
RAM
/1 Set up busnmaster transfer and send data to host PC shared nmenory via DVA.
bm.init(g_pc_shared_nenory_buffer, NULL, DMA CHANNEL);
bmtransfer((void *)g_plane_of _voxel _intensities, VOXELS PER PLANE,

(void *)0, 0, OUTPUT, VOXELS_PER PLANE);
transfer_conplete(); /1 Wait for busmaster transfer to finish.
write_mail box(DONE, OUTBOX); // Send done signal to LabVIEWC N.

}
__INLINE fl oat ReadAndProcessVoxel (voi d)
{

unsi gned int ai x_buffer[MAX_SAMPLES PER VOXEL + 1];
/1l This is the array in which we first store the raw data fromthe Al X
/1 board. Allocate one extra point in order to correct for the
/1 Al X_bl eed_fifo probl em docunment ed bel ow.

int count;

float converted_ai x_dat al MAX_SAMPLES PER VOXEL] ;
/1 This is the array in which we will store converted voltage data from
/1 the Al X board.

float dsp_result;
/1 This is where we store the result of the DSP's cal cul ations.

float cosine_of _fundanental = 0;

float sine_of_fundanmental = O;

float cosine_of _first_harnmonic = O;

float sine_of _first_harmonic = 0;

fl oat square_accumul ator;

float *pointer_to_cosine_fundanental table = g_cosi ne_fundanental _tabl e;

float *pointer_to_sine_fundanental _table = g_sine_fundanental _table;

float *pointer_to_cosine_first_harnonic_table = g_cosine_first_harnonic_table;
float *pointer_to_sine_first_harmonic_table = g_sine_first_harnonic_table;
float *pointer_to_converted_aix_data = converted_ai x_dat a;

Al X _gate(0, OFF);
/1 This disables FIFO gating on the Al X nbdule installed on site O.
/1 W nust stop the AlX fromsanpling to ensure that we have accurate
/1 timng whether or not the Al X board has run out of FIFO buffer space.
Al X bl eed_fifo(0, O, aix_buffer, g_sanples_per_voxel + 1);
/1 This puts the sanples fromthe Al X FIFO buffer into aix_buffer[].

36

/1 We noticed that Al X bleed fifo puts O into the first el enent of
/1 aix_buffer. Therefore, we read g_sanpl es_per_voxel + 1 points and fix
/1 this in the call to Convert Al XBufferToFl oat Array.
Al X reset _fifo(0);
/1 This erases the contents of the Al X FIFO buffer.
Al X _gate(0, ON;
/1 This starts the AlX gating data to the FIFO buffer again.

Convert Al XBuf f er ToFl oat Array(g_sanpl es_per_voxel, aix_buffer + 1,
converted_ai x_data);
/1l W begin converting sanples at aix_buffer + 1 in order to correct for
/1 the problemw th Al X bleed_fifo docunented above.

/1l Performa partial Discrete Fourier Transform

for (count = g_sanpl es_per_voxel; count > 0; count --)

{
cosi ne_of _fundamental += *pointer_to_cosi ne_fundanental _table
* *pointer_to_converted_ai x_dat a;
poi nter_to_cosi ne_fundanent al _t abl e++;
poi nter_to_converted_ai x_dat a++;
}

poi nter_to_converted_ai x_data = converted_ai x_dat a;

for (count = g_sanpl es_per_voxel; count > 0; count --)

{
si ne_of _fundamental += *pointer_to_sine_fundanmental _table
* *pointer_to_converted_ai x_data;
poi nter_to_sine_fundanental _t abl e++;
poi nter_to_converted_ai x_dat a++;
}

pointer_to_converted_ai x_data = converted_ai x_dat a;

for (count = g_sanpl es_per_voxel; count > 0; count --)

{
cosine_of _first_harnonic += *pointer_to_cosine_first_harnonic_table
* *pointer_to_converted_ai x_dat a;
poi nter_to_cosine_first_harnonic_tabl e++;
poi nter_to_converted_ai x_dat a++;
}

poi nter_to_converted_ai x_data = converted_ai x_dat a;

for (count = g_sanpl es_per_voxel; count > 0; count --)

{
sine_of _first_harmonic += *pointer_to_sine_first_harnoni c_table
* *pointer_to_converted_ai x_dat a;
poi nter_to_sine_first_harnonic_tabl e++;
poi nter_to_converted_ai x_dat a++;
}

squar e_accunul at or = cosi ne_of _fundanental * cosine_of _fundanental;

squar e_accumnul at or += sine_of _fundanental * sine_of_fundanental;

squar e_accumul at or += cosi ne_of _first_harnonic * cosine_of _first_harnonic;
squar e_accumul ator += sine_of _first_harnmonic * sine_of _first_harnonic;

dsp_result = sqrt(square_accunul ator);

dsp_result *= g_vol tage_scal ar;
/1 This scales dsp_result to represent an RVS vol tage val ue.

return dsp_result; // to_ieee(dsp_result);
/1 This converts the floating point value dsp result
/1 to an | EEE standard fl oat.

voi d nai n(voi d)

37

unsigned int current_voxel _i ndex = O;
/1 When a new voxel intensity is conputed, this index will tell us where
/1 in g_plane_of_voxel _intensities to put the new val ue.

unsigned int first_pulse_flag = FALSE,
/1 This flag records whether we have received the first pulse fromthe
/1l AT-M O board yet.

float dsp_result; // the result of the DSP al gorithm

int failure_counter = O;

Initialize();

Reset Ext er nal | nt errupt Fl ag() ;
whil e (TRUE)

if (ReadExternal InterruptFlag())
Reset Ext ernal I nterrupt Fl ag();
dsp_result = ReadAndProcessVoxel ();
if (first_pul se_flag)
if (current_voxel _index < VOXELS PER _PLANE)

/1 During testing, this "if" |oop provides an
/1 exit for the program upon conpletion of a plane.

{
*(g_pl ane_of _voxel _intensities + current_voxel _i ndex) =
dsp_result;
/1 This plugs the DSP result directly
/1 into the voxel plane array.
current _voxel _i ndex++;
}
el se
{
printf("current voxel index: %\t voxels per plane: %\ n",
current _voxel _i ndex,
VOXELS_PER_PLANE) ;
printf("% voxels took too long to process.\n\n",
failure_counter);
Statistical Anal ysis();
Report Error (ERR buf f er Overfl ow);
}
}
el se
{
first_pul se_flag = TRUE;
/1 This assures that data acquired before the scan began is not
/1 stored. The flag is set true now, since an external
/1 interrupt nust have been received for this line to execute.
}
if (ReadExternal InterruptFlag())
{
failure_counter++;
/1 Report Error (ERR_out O Ti ne) ;
/1 1f another interrupt has already been triggered,
/1 then the cal cul ation took too |ong.
}

}
i f (ReadHost Mai | boxFl ag())

/'l This checks to see if LabView has sent a mail box request to
/1 mailbox O signaling the end of a scan.

38

if (current_voxel _index == (VOXELS _PER PLANE - 1))
{ dsp_result = ReadAndProcessVoxel ();
*(g_pl ane_of _voxel _intensities + current_voxel _i ndex) =
dsp_result;
SendPl aneTolLabvi ew(ERR_noErr);
else if (current_voxel _index > (VOXELS PER PLANE -1))

Report Error (ERR _buf ferOverfl ow);
SendPl aneTolLabvi ew(ERR_buf f er Overfl ow) ;

}
el se
{ .
Report Er r or (ERR_not EnoughPoi nt sl nPl ane) ;
SendPl aneToLabvi ew(ERR_not EnoughPoi nt sl nPl ane) ;
}

Reset Host Mai | boxFl ag() ;

39

References:
1. Fujimoto, J.G. “Biomedical imaging using optical coherence tomography”, Technical Digest Series,
Vol.7. 1999 p. 256, 25

2. Rudolph, W.; Kempe, M. “Trendsin optical biomedical imaging”, Journal of Modern Optics, vol.44,
no.9 p. 1617-42. 1997

3. Tuchin, V.V. “Tissue optics: tomography and topography” Proceedings of the SPIE - The International
Society for Optical Engineering. 2000 vol.3726 p. 168-98

4 JA. lzatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, Jr., “Optical coherence
tomography and microscopy in gastrointestinal tissues,” I1EEE J. Sel. Topics Quant. Electron. 2, 1017-1028
(1996).

5. S.A. Boppart, M.E. Brezinski, B.E.Bouma, G.J. Tearney, and J.G.Fujimoto, “Imaging developing neural
morphology using optical coherence tomography,” J. Neurosci. Methods 70, 65-72 (1996)

6. S.A. Boppart, M.E. Brezinski, B.E.Bouma, G.J. Tearney, and J.G.Fujimoto, “Noninvasive assessement
of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad.
Sci 94, 4256-4261 (1997)

7. S.R. Chinnand E.A. Swanson, “Blindness limitationsin optical coherence domain reflectometry,”
Electronics Letters 29, 2025-2027 (1993)

8. Barbara M. Hoeling, Andrew D. Fernandez, Richard C. Haskell, Eric Huang, Whittier R. Myers, Daniel
C. Petersen, Sharon E. Ungersma, Ruye Want, and Mary E. Williams. “An optical coherence microscope
for 3-dimensional imaging in developmental biology” Optics Express 6: 136-146 March 27, 2000

9. Whittier R. Myers Senior Thesis. Harvey Mudd College, physics, class of 1999.

10. Barbara M. Hoeling, Andrew D. Fernandez, Richard C. Haskell, and Daniel C. Petersen. “Phase
Modulation at 125 kHz in a Michelson Interferometer Using an Inexpensive Piezoel ectric Stack Driven at
Resonance”. Review of Scientific Instruments—to be published in may 2001.

11. Optics, third ed. Eugene Hecht. Adelphi University. Addison Wesley longman, inc. 1998. Chapter
7.4 pg 306-311

40

	Improvements to an Optical Coherence Microscope
	Through Digital Signal Processing
	Tom Driscoll
	Richard Haskell
	Dan Petersen.
	Section 1 – An Overview of Optical Coherence Microscopy

	Digital frequency combs and DFT bandwidth
	
	
	A

	Leads to sidebands

