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Core Lab: What Makes Things Tick?
Homework 2

Sept. 24, 2013

Homework 1

A mass m is suspended from a spring of spring constant k in a cylinder of a viscous

fluid. The fluid produces a drag force on the mass of the form F; = _b%' where b is a
positive constant. The top of the spring is attached to a hook that is made to oscillate
vertically with drive amplitude D and angular frequency w = 27tf. Solve for the

steady-state amplitude and phase of the motion of the mass as a function of the drive
frequency f. (Thatis, the phase of the mass’s motion compared to the phase of the drive.)

Plot the amplitude A and phase ¢ of the mass’s motion against f for m = 200g,

k = 10%, b =01 %, and D = 2cm. Your solution should use the complex exponential
approach.

The equation governing this system’s motion, from Newton’s Laws, is
ma = —kx +k (Dsinwt —x) —bv, 0= —kx+k(Dsinwt —x) — bx — m%

Because sine and cosine are basically the same function, I can substitute (D cos (wt —Xx — %) )
for (D sin wt — x). Isolating %, I can rewrite the above equation as
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To find the homogeneous solution to this equation, I'll temporarily ignore the driving and
set the left side of the equation above equal to zero. This gives me
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The characteristic polynomial of this equation is
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Solving this using the quadratic equation, I find that
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The homogeneous solution to the differential equation must then be, for some constants
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Because I'm trying to find the steady-state amplitude and phase of the mass’s motion and
these terms go to zero at high values of ¢, I don’t actually care about this solution.

Because the driving function takes the form
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I can expect the steady-state solution of this differential equation to take a similar form,

Ae“!=7 = Ae~7e“! = Be“!. Plugging this expected solution into my differential equa-
tion, I find that
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Now cancelling all the e“’s, I find that
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That thing in the box is then the steady-state amplitude of the motion of the mass, and
the phase is a constant .

Here’s the plot of amplitude (after a long time), coming from the MATLAB expression
y = real((k.*D)./(-4.*m.*pi.*pi.*x.*x + j*b + 2.%k));

after I set up a vector called "x" that went from 0.001 to 5.000 by increments of 0.001, and
filled in the proper variable values:
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And here’s the graph of phase (w):
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