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Abstract

A two-mass oscillator was constructed using two carts, springs, and a damper
on a track. A model for the amplitude and phase of each carts displacement
for an input frequency was developed through theoretical analysis. The sys-
tem was found to have two resonant frequencies and to exhibit a ”phase-flip,”
where one of the carts would be opposite in phase to the other one for a range
of frequencies, but flip so that it was in phase with the other at sufficiently
low frequencies. Numerical data taken from the experiment failed to verify the
model, as the data was likely processed incorrectly.

Introduction

Many systems can be modeled as a two-mass oscillator, notably atomic bonds. Such
systems often have some damping present. Subject to a period forcing function,
these systems will also display resonance at a certain frequency or frequencies. This
experiment investigated the frequency response of a two-cart mechanical system,
representing one possible configuration of dampers, masses, and springs.

Theory

The model for the experiment is represented in Fig. 1. In this particular two-mass
oscillator, only the left mass, m1, is damped.

Assume that the input displacement y is sinusoidal and can thus be written as
y = Aeiωt. Then assume that the steady-state responses of x1 and x2 will oscillate
at the same frequency, so x1 = X1e

iωt and x2 = X2e
iωt [1]. By Newton’s second law

of motion, the governing system of equations [2] is

m1ẍ1 = −k1(x1 − y) − k2(x1 − x2) − cẋ1 (1)

m2ẍ2 = −k2(x2 − x1) − k3x2 (2)

For the purposes of this experiment, it is assumed that k = k1 = k2 = k3 and
m = m1 = m2. From the above assumptions, we can solve the differential equations
for X1 and X2, combine the expressions into a single complex exponential, and
obtain the amplitudes and phases of X1 and X2 (A1, A2 and φ1, φ2 respectively) as
functions of the drive frequency ω.
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Experiment

The apparatus for the experiment is shown in Fig. 2. The model discussed in the
previous section was recreated with two carts, three springs, and a magnetic damper
on a track. Rather than measuring the linear displacement of the motor input, the
angular displacement was measured and later converted into linear displacement.

The motion sensor was set in front of one of the carts so that it would detect
a cardboard flag of negligible mass attached to the cart. DataStudio started data
collection after the voltage source was switched on and the motor began to turn.
Data collection continued until after the system apparently remained in steady state
for a few seconds. Between each run, the system was allowed to return to rest and
the voltage was adjusted. The system’s responses to voltages of 10.5V to 1.5V
(uncertainty of ±0.2V) were observed and recorded. After sufficient data had been
collected for one cart, the motion sensor and flag were moved to the other cart. Raw
data was recorded in the form of position and time in DataStudio. [insert figure of
DataStudio display]

Figure 1: Representation of the system model. The input displacement y is applied
to the leftmost spring. Mass m1, attached to two springs with spring constants k1
and k2 on opposite sides, is damped by a factor of c and has horizontal displacement
x1. Mass m2, attached to a spring of spring constant k3 with a fixed end, has
horizontal displacement x2.
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Figure 2: Apparatus of the oscillating system and instruments used to measure the
system’s motion. The DC motor provided a sinusoidal displacement with amplitude
A = 0.021 ± 0.005 m and frequency directly proportional to the input voltage. The
two carts are each of mass m = 0.600± 0.0001 kg and are attached to springs, each
of spring constant k = 10 ± 0.1 N/m. The damping coefficient of the magnet was
not directly measured, but estimated to be c = 0.02 ± 0.01 kg·m. A rotary motion
sensor records the input displacement while a sonar motion sensor records one of
the cart’s displacement. Both sensors connect to an interface which sends data to
DataStudio.

Results

The raw data from DataStudio was analyzed using an Igor procedure which called
upon the program’s sinusoidal curvefitting function to determine the amplitude,
frequency, and phase of the steady state response. The resulting amplitudes and
phases were both plotted against the driving frequencies that had been determined
by the fit. Comparisons of these measurements to theoretical analysis are illustrated
in Fig. 3.

Fitting the measured amplitude and phase data to the theoretical expressions
yielded large χ̃2 values, greater than an order of magnitude of 2, for the amplitude
A1 and phases φ1 and φ2. For the amplitude A1, the relatively sane value of χ̃2 = 9.9
was achieved only with extremely large uncertainties in the fit coefficients. While
the predicted amplitude curves visually fit the data, the predicted phase curves do
not seem to fit the data at all. Theoretical analysis predicts that both curves should
be exactly equal. As such, none of the data could be considered good fits to their
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Figure 3: Amplitudes A1, A2 and phases φ1, φ2 as functions of frequency ω. Smooth
curves are a fit to Eqs. 1, 2, 3, and 4 discussed in the theory section, yielding the
fit coefficients shown in the figure with χ̃2(A1) = 9.9, χ̃2(A2) = 364, χ̃2(φ1) = 202,
and χ̃2(φ2) = 6.5 × 103. The upper panel shows residuals, which appear to be very
large due to overly constrained uncertainties.

corresponding theoretical expressions.
However, both the data and theoretical analysis for the amplitude response of

the system show that the system has two resonance frequencies, where the amplitude
of a cart’s steady state motion is at a maximum. These frequencies are approxi-
mately 0.7 Hz, where the undamped cart moves with maximum amplitude, and 1.2
Hz, where the damped cart moves with maximum amplitude This is a reasonable
expectation, given that were the damped and undamped carts to be separated into
smaller systems and subjected each to different frequencies, one would find that the
two smaller systems have two distinct resonance frequencies. I suspect that the sep-
aration of the two peaks of the graph, the two resonance frequencies, is dependent
upon the damping coefficient c.

A characteristic of the system that I cannot intuitively see from inspecting the
phase graphs is a phase-flip as the system transitions from high to low frequencies.
My initial observations of the system, before taking any data, saw that the two
carts would be totally opposed in phase (one would be displaced to the right and
the other displaced to the left, with the undamped cart in phase with the input)
at high frequencies and at some threshold frequency, would ”flip” to being in phase
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with each other. The phase-flip always seemed to occur in the damped cart. The
undamped cart would always remain in phase with the input displacement. It
is much easier to discern this two-mode behavior from the graph of A1, as the
amplitude flips from postive to negative value at approximately 0.9Hz.

Conclusion

In this experiment, I was able to observe some fundamental characteristics of the
two-cart mechanical oscillator: 1) it has two resonance frequencies, one for each
mass, and 2) that there are two apparent modes of the system, one where the carts
are in phase, and one where the carts are opposite in phase. However, it was difficult
to model this behavior both through theoretical analysis by physics fundamentals
and through numerical data. My theoretical analysis required simplifying assump-
tions (e.g. all the spring constants were equal) that may have made the model
inaccurate. The greatest source of error in my experiment and the main reason
why my measurements did not match theoretical expectations was how I processed
the raw data from DataStudio. During this experiment, I learned to program my
first Igor Procedure, and the method by which the procedure calculated the phase
difference between the input frequency and the cart’s displacement was probably
wrong. If I were to re-analyze the raw data with a better Igor procedure, I would
likely find a better fit with the predicted phase curve.
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