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Abstract

A logarithmic amplifier was given a sinusoidal input voltage, and the cor-
responding output voltage was studied. The logarithmic amplifier circuit was
made with an operational amplifier, diode, and resistor circuit elements and
the input and output voltages were studied with oscilloscopes. A fit function
Vout = —Vr In(Asin(ft+¢)+ k) was made with the following coefficient values:
Vr =0.05814 £ 7.7 x 107° V, A = 13100 £ 170 V/A, f = 1.256039 x 1076 +
7.9%x 10712 Hz, ¢ = 1.6357 4 0.00087, and k = 13800 + 180 V/A. The x2-value
for the graph was 1.78 per degree of freedom. The fit function modelled most of
the data well except for periodic sharp peaks, resulting in a partially accurate
model of the logarithmic output voltage.

Introduction

In this experiment, I studied a logarithmic amplifier, which produces a nonlinear
output voltage that varies according to the natural logarithm of the input voltage.
The logarithmic amplifier consists of two main important circuit components: an
operational amplifier and a diode. Operational amplifiers are integrated circuits used
in many circuit applications and can be used to perform many analog mathematical
computations, such as multiplication and integration when coupled with different
circuit elements. Diodes, a popular example of which is the LED (Light-Emitting
Diode), are circuit elements that allow current to flow in one direction more easily
than the other. A logarithmic amplifier can be created by arranging these two circuit
elements together with a resistor, which dissipates energy. This experiment seeks to
study the logarithmic amplifier’s nonlinear behavior by modeling the output voltage
as a function of a sinusoidal voltage input.

Theory

A simple logarithmic amplifier can be made following the diagram in Fig. 1.

The operational amplifier performs two basic functions: its inputs draw no cur-
rent and its output ensures the two input voltages are equal.[!) Thus, when a volt-
age Vi, is inputted, the current through the resistor (V;,/R by Ohm’s Law) is
equal to the current through the diode. Next, using the Shockley Diode equation
(I = IS(eVD/”Vthermal -1) ~ IS(eVD/"Vth”mﬂl) and the input current as V;, /R, we
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Figure 1: Circuit diagram of a logarithmic amplifier. The function generator gen-
erates an alternating voltage to supply the input voltage. The oscilloscope labeled
Vin measures this input voltage with respect to ground. Charge then passes through
the resistor (R) and then the diode (D). The output voltage is read by the second
oscilloscope labelled V,,; with respect to ground.

can derive the voltage across the diode (Vp) to bel?

Vb = —nVihermal ID(ZZR) (1)
The saturation current I, the thermal voltage Vinermai, and the ideality constant
n characterize the diode. In the circuit drawn, the output voltage (V) is equiv-
alent to the voltage across the diode (Vp) because the diode lies between virtual
ground and the output voltage. Theoretically, substitute a time-varying V;, into
this equation should yield V,,; as a function of time. In this experiment, I will try
to determine if this is true.

Experiment

The setup of the experiment is based on the circuit diagram described in Fig. 1.

In this experiment to test equation (1), a function generator was connected to
supply a sinusoidal voltage versus time input with respect to ground. A sinusoid
with a frequency of 20 Hz was used.

In the circuit, a 100 ohm resistor was used as the resistor. Also, an external
+15V and —15V power supply was used to power the operational amplifier.

To collect my data, a LabJack U3-HV unit was used to take in numerical data for
the input and output voltages with respect to ground (where the two oscilloscopes
are labeled in the Fig. 1). In addition, an oscilloscope was attached across these
same two voltages in order to view a live voltage vs. time plot. The sampling



rate with the LabJack unit was 10,000 Hz, well above the input voltage’s 20 Hz
frequency to gather the maximum possible points within the LabJack’s ability and
also to prevent any possible aliasing. I took my data in approximately 2 second
intervals.

In order for me to determine the instrumental error from my setup, I also took
data using a square wave for an input voltage. This will be discussed further when
I discuss the results of my experiment.

Results

To analyze my data, I first hypothesized that my output voltage was of the form
f(t) = =Vrin(Asin(ft + ¢) + k). I then fit my data with this function in Igor.

This fit function is the original theoretical derivation in Eq. 1 with Vj, sub-
stituted as a sinusoidal function of time (—n‘/}hermalln(%)) with a few
modifications. I chose not to include the I, R, and n parameters because leaving
the I;R and n terms in the fit function resulted in insanely high uncertainties for the
fit coeflicients, resulting in a meaningless result. However, the behavior of the I, R,
and n parameters are still encapsulated by the parameters of the fit function. That
is, Vi = nVipermais A is equal to the amplitude of the sinusoidal input voltage (A’)
divided by IR, and k is equal to the voltage offset of the sinusoidal input voltage
(k') divided by I R. Figure 2 shows my best fit curve with this fit function.

To obtain uncertainties for my output voltage, I only took into account instru-
mental error. The instrumental error was found by using the output voltage data
obtained from using the square wave input voltage. Since the output is also a square
wave, I took one section of the output when all the output voltage values were ap-
proximately the same, which amounted to 250 data points, and took the standard
deviation of those points. The resulting standard deviation was 0.0053, which was
then used as the value for all the error bars.

The most notable feature of this fit function can be seen immediately through
the residuals, which follow a pattern. Residuals are computed by calculating the
difference between the expected value (obtained from the fit function) and the col-
lected data value. The residuals thus show that our fit function is not reliable at
modeling the behavior close to the high peaks.

Looking at the uncertainties for each of the fit coefficients, it can be seen that
most of the uncertainties are several orders of magnitude smaller than the actual
coefficient values, indicating that the fit function fits the data pretty well. The ex-
ception lies with the A and k values, whose uncertainties are both around two orders
of magnitude below the actual value. This makes sense because these two values
control how tall the fit function is, and since the fit function is not encapsulating the
behavior at the sharp peaks of the data, it is reasonable to see that the uncertainties
for A and k are larger than ideal.

Recall how the real parameters I;, R, and n were eliminated under the claim
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Figure 2: Output Voltage as a function of time. The fit curve has the form Vs =
—Vrln(Asin(ft + ¢) + k) with the following values: Vp = 0.05814 4 7.7 x 1075 V,
A =13100 £ 170 V/A, f = 1.256039x 1076 4 7.9x 1072 Hz, ¢ = 1.6357 £ 0.00087,
k = 13800 + 180 V/A. The y2-value for this graph is 1.78 per degree of freedom.
The upper panel shows residuals, which follow a pattern, showing that this fit does
not fully describe the output voltage at the sharp peaks.

Note: Above graph is a zoomed-in image of all the collected data.

that their behavior would be encapsulated in the fit function’s parameters. Now,

we compare our value of our fit coefficients A and k with the expected values for
I?;B and I’:—;z, where A’ and k' are the amplitude and voltage offset of the original

input voltage respectively. We can do this by comparing % and ’2—,/, which we expect
to be equal. After fitting the raw input voltage to a sine function, I obtained that
A" = 0.066662 V and k' = 0.13603 V. However, because of how the circuit was
arranged, there is an inherent voltage offset reading in &’ as it is read through the
LabJack unit. To find this offset, I let the LabJack unit take in data for about two
seconds without turning on the function generator. I then took the input voltage
data and obtained an average of 0.06486 V. Thus, the actual input voltage has a
DC offset of k' = 0.13603 V — 0.06486 V = 0.07117 V. Having showed that % and
‘2—,/ are approximately equal validates the elimination of the Iy R parameter when we
fit our function in Figure 2.

The y2-value is greater than 1, which means there are other sources of error I
have not accounted for. This makes sense because, as mentioned before, my error
bars only took into account instrumental error. Also, this fit function, as mentioned



before, does not fit the sharp peaks well at all, contributing to a less-than-ideal y?2-
value as well because the x2-value measures how well the fit function fits the data.
Nevertheless, I think this y2-value still implies a fairly good fit for the ”valleys” of
the graph.

Conclusion

As evidenced in Figure 2, the hypothesized fit function fits the data for most of
the graph, the exception being that it does not model the behavior at the peaks
very well. Besides the peaks, my function fits the data very well, as evidenced
through the coefficient values I obtained and the reduced y2-value, which would
be even closer to 1 (and therefore fit the collected data better) without the peaks.
I think that my results are limited by the mathematical model I used to try to
encapsulate the behavior of the circuit. It is also possible that at the peaks, the
LabJack oscilloscope does not take in properly because of the sudden change. To
improve upon this experiment, different mathematical models or even different input
voltage functions can also be tested to possibly better model the behavior of this
circuit.

Logarithmic amplifiers are used in real-world applications, such as signal pro-
cessing. 3] As evidenced by my experiment, for some portion of the logarithmic
amplifier’s behavior, cannot simply substitute the input voltage as a function of
time into Eq. 1. to accurately predict the amplifier’s output. Thus, in this exper-
iment, I have determined the equation that accurately models the output voltage
for a logarithmic amplifier given a sinusoidal voltage input with the exception of
the behavior at the peaks. In real-world applications, knowing this information can
help avoid signal processing inaccuracies when using a logarithmic amplifier.
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