5. Conclusion — Has the author accomplished the investigation described in the introduction?
Are limitations with the experiment discussed, along with possible extensions or lines of follow-
up research?
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6. Abstract — Does the abstract concisely summarize the whole paper? Is it as quantitative as
possible?
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7. Mechanics — Is the prose easy to read; does it follow logically? Are terms defined adequately?
Are citations used correctly? Are there spelling, punctuation, or usage errors? s there a pattern to
these errors? Have variables been italicized, units typeset properly, etc.
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8. Strengths — What are at least two things you think are particularly strong in the paper?
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9. To Work On — What are at least two specific suggestions for changes youd like to see in a re-
vision? Please focus on substance over mechanics.
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1. Introduction — Does the introduction provide sufficient context for the experiment? Does it
answer the “so what?” question? Does it motivate you to read further? Can you tell by the end of

the in swer?
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2. Theory — 'The theory section should relate the relevant theory. It need not (indeed should not)
show all the algebraic steps, but any derivations should be set up well enough that someone com-
petent in algebra could make it to the final reported result. Does the paper concisely describe the
relevant theory? Is the geometry clear? Have all symbols been defined? Have any simplifying as-

sumptions been stated and justified? .,/
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3. Experimental Methods — Is there enough detail to permit an interested reader with access to
the appropriate equipment to reproduce the experiment? Are any s ies of the apparatus or
dat ing noted? Does it read too much like a recipe? (The author shouldn’t issue commands to

e reader, but should describe what was done.)
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4. Results / Discussion — Are the important data presented in one or more figures with appro-
priate captions, before the results are “spun” with an interpretation? Have they been carefully ana-
lyzed? Has the author claimed that something follows from the data without thoroughly justifying
that claim? Are the results as quantitative as the data allow? Is it clear how uncertainties were es-
timated and what limits the precision of the results?

thwz T - dalh abouf L1 first, fhen semp Falk ohout J{—Maé, ~tate.

!Jmul_) sis — (BA

Peer Review Guide Physics Technical Report



-]
.

Difference in Phase [Deg)
w =
I r
it T

Time ()

Function: f{t) = A * exp{-1*lambda*t)*{cos[
Coefficient values [no uncertainties used)
A =2(1354
lambda =0.34283
omega =8.0243
phi  =-2.3924
offset =-0.44675

ga“t + phi) + su L+ phi}} + offset

Figure 3: The difference in angular displacement. As steady state is reached, the

pendulums are swinging exactly opposite (the way that ¢ and  are defined say that

when they are opposite the difference is zero. The fit is fairly close. The equation is

Ae M [cos(wt + ¢) +sin(wt + ¢)] + d. Looking at the residuals, it seems that the fit

/6; is fairly good. However, because the residuals follow some sort of function, it seems
WM&LSW“ ‘that we could do better.

U
b -
éow“;‘ 5 Conclusion
e
gfso“') The mass of the cart seemed to influence the magnitude to witch the pendulums
Mso ol ; ;
¢ ¥ could pull it. For example, if the cart was very heavy, a pendulum would not be
A&Y%, ) able to pull it one way for it to pull the other one. In the future, the experiment
Ny ¥ )473 could be done with a lighter cart or heavier pendulum. Interestingly, although the
Pyl pendulums were expected to finally reach synchronization, they infact-semehow

reached exactly the opposite, being out of phase.
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Initially, ¢ = 0 (pendulum 2 was at rest) and § was given a small displacement
(6o = 7/8). The two pendulums swung, and the recording stopped once the friction
in the cart forced it to stop moving. At this point, the pendulums were swinging as
if the pivot was stationary. Fig. 2 shows a sample run.

4 Results

Without results from Mathematica, it is impossible to compare these results to
theory, however it kind of makes sense. This section will develop more later.

.1

oA \ }P
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Figure 1: Apparatus to measure the relationship between the angular displacement
of pendulum two (¢) and the angular displacement of pendulum one (6) simultane-
ously. A rotary motion sensor was placed at the hinge of the pendulum to achieve
this. The displacements were measured in opposite directions because, in the ex-
periment, it became apparent that the two realized steady state where 8 = ¢.

Figure 2: The left graph is pendulum 1 as a function of time, and the right is
pendulum two. Note that at ¢ = 6 s, both pendulums lapse into a more predictable
swing.



where m is the mass of a pendulum (For simplicity, the pendulums were the same
weight), £ is the length of each, and @ and ¢ are the angular displacements from the
vertical of each pendulum.

The kinetic energy is slightly more complicated, since the pendulums have both
vertical and horizontal components. The kinetic energy is

1 ; ; ; .
T(t) =3 (mc:a? +m [(:E: + 00cos8)? + (£0sin 0)® + (& + Ldcos §) + (€psin qs)?])
(4)

where m, is the mass of the cart and z is the position of the cart.

Using Euler’s equations, we can find a function for ¢ by solving the system

oL d 8L
Bq 4 9q (5)

Since we want to find an equation for ¢, the angular displacement of the pendu-
lum at rest initially, we let ¢ = ¢. We find that

oL

% = —ml(isin ¢¢ + gsin @) (6)
and
d oL 3 235, 2.3 . : % in ¢
5 = 20m¢ + £2¢ + 2me + mi cos ¢ + £ cos ¢ + Imi cos ¢ — Emsin g (7)

however, when we equate Eq. (6) and Eq. (7) in order to find ¢, we have the function
z and its derivatives. §8"We need another equation.
We have the equation for z:

0=m [mci': + m(2% + £ cos 06 + £sin 062 + £ cos ¢ + £sin ¢wq.;>2)] (8)

But this also depends on ¢ and 6. Notice that, since 0 relates to a pendulum in the
same way that ¢ relates, the equations for ¢ will be the same for 6, with all the ¢’s
replaced with . Using mathematica, we find that the solution to these equations,
with appropriate initial Conditions, are

Mathematica hates me, but these equations will get here eventually. 9)

3 Experiment

The apparatus for the experiment is shown in Fig. 1. It was not feasible to measure
the angular displacement of both pendulums in addition to the position of the cart.
A rotary motion sensor was placed on the pivot point of each pendulum. A mass
(not shown in the figure) was also placed at the bottom of each rod. These masses
(m) were equivalent for simplicity, the mass of the cart (m.), however was different.
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Interactions Between Two Non-Stationary
Pendulums
Alexander Rich

Harvey Mudd College
23 November 2013
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Should two pendulums on a frictionless cart synchronize? It seems that if
they are pulling the cart one way, the other one would like to do the same. .
This experiment finds that two pendulums will reach a steady state in which =
the pendulums are exactly out of phase. The results hopefully will match with (98
the theory, but currently the theory hasn’t been completely explained.

o \_,_,hc.d- ﬂoo""\

O &,(_‘3\“‘\0 -

1 Introduction e
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This experiment sought to uncover the perplexing nature of two pendulums on a  >wmce parek

cart. Inspired by the synchronization of metr lank, it seemed o
4 teasonable to test out how and why the metronomes syfiched—up. It makes sense + uf"“hj d\k

intuitively,‘l‘t/ one considers the forces exerted by each metro110rﬁ'7:?1’1‘E‘l’l’ﬂ“[:a‘l'?ﬁﬂ??s g mn . “; w7 Y

this experiment, two pendulums were placed on a “frictionless® cart and one of them — <~ gre Nk

was given an initial angular displacement. What happened next was Science! L 6‘:“?

w9

2 Theory

The simple pendulum is a well-understood system. It’s behavior is sinusoidal, and
if damped it will eventually stop swinging. The equation of motion can be written
using Y 7 = I, where 7 is the torque and I is the moment of inertia,

b+ % sin @ = 0 Q)
where g is the acceleration due to gravity and [ is the length of the pendulum.
However, this assumes small angles and no unforced behavior. By putting the
pendulum on a cart, there is now a forcing function on each function, the torque
axis is not constant, so the method used above is not available. Instead, we can use
the Lagrangian L:
A L=T-u (2)

where T is the kinetic energy and u the potential. For the double pendulum and
cart system, we see that the potential energy is simply gravitational and held by
the pendulums:

u(t) = fmg(2 — cosd — cos @) (3)



