Alex Rich What Makes Things Tick? Professor Saeta

Homework 3

Solution: The voltage out is equal to the voltage over the capacitor. We know that the voltage over the capacitor is $\frac{Q}{C}$ where Q is the charge on the capacitor and C is the capacitance of the capacitor. We start with

$$\frac{dV_C}{dt} = \frac{1}{C}\frac{dQ}{dt}$$
$$= \frac{I}{C}$$

We know that $I = \frac{V_{in} - V_C}{R}$, so

$$\frac{dV_C}{dt} = \frac{V_{in} - V_C}{RC}$$
$$\frac{dV_C}{V_{in} - V_C} = \frac{dt}{RC}$$
$$\int \frac{dV_C}{V_{in} - V_C} = \int \frac{dt}{RC}$$
$$-\ln(V_{in} - V_C) = \frac{t}{RC} + C$$
$$V_{in} - V_C = Ae^{-t/RC}$$
$$V_C = V_{in} - Ae^{-t/RC}$$

We know that initially, V_C is zero, so our final equation for V_{out} is (since $V_C = V_{out}$ and $V_{in} = V_0$):

$$V_{out} = V_0 \left(1 - e^{-t/RC} \right)$$

A graph of this function yields the following result.

Notice that the voltage starts at zero, then exponentially approaches V_{in} , which was 2 V in this case.