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Abstract

Differences in behavior at different frequency components of a passive and
active high-pass filter were studied by Fourier analysis. At a high amplitude
that was still well below the active filter’s saturation voltage, the active filter
introduced massive spikes in amplitude at low even multiples of the input square
wave’s fundamental frequency. These additional components were most likely
due to amplification of noise in the input square wave by the active filter’s
operational amplifier. They only appeared in the low frequency components
because resistive damping in the active filter attenuated the higher-frequency
noise.

Introduction

High-pass filters are circuits that ideally leave high frequency signals untouched
from input to output and completely block low-frequency signals, or signals with a
frequency lower than a specified cutoff. With applications in science, engineering,
and consumer products, high-pass filters come in two varieties: passive and active.
Passive filters are much simpler circuits, but active filters can amplify their inputs
as well as filter them. Of course neither type of filter behaves ideally, and this
experiment aims to characterize the differences in behavior of these two types of
filter under extreme circumstances. In the world of perfect theory and ideal behavior,
there should be no difference between the filters, but what I’m testing is how non-
ideal behavior such as signal noise, the complexity of the active filter, and the
difference between the first-order passive filter and the second-order active filter
affect real-world performance.

Theory

In theory, both circuits should have the same behavior. This is illustrated by study-
ing the potential at different poins in the following schematics:
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Figure 1: Schematic diagrams of the filters

(a) Schematic diagram of a passive high-
pass filter. Because the bottom rail is tied
to ground, Vin is simply the potential of
the left side of the top rail and Vout is the
potential of the right side of the top rail.
This circuit takes advantage of the fact
that a capacitor has very low impedence
to high-frequency signals and very high
impedence to low-frequency signals.

(b) Schematic diagram of an active high-
pass filter. The triangular object in the
middle is an operational amplifier. Both
inputs on the left side of the operational
amplifier, or op-amp, have essentially in-
finite impedence, and the output on the
right side produces whatever current it
can to make the difference between the
two inputs close to zero. This circuit
takes advantage of the same property of
capacitors as the passive filter.

First, let’s examine the passive filter. Assuming an alternating current (AC)
signal is used as an input, we can say that the impedence of the capacitor is

ZC =
1

2πjfC
(1)

where j is the imaginary unit, C is the capacitor’s capacitance, and f is the frequency
of the input signal. The impedence of a resistor is simply its resistance. Finding the
potential Vout, we know that

Vin − iZC = Vout, and Vout − iR = 0 (2)

Solving the equation on the left for the current i in the circuit and plugging it
into the equation on the right, we have a governing equation for this system. Now
substituting in for ZC from Equation 1 and solving for Vout, I find that

Vout =
Vin

1 + 1
2πjfRC

(3)

Because the input and output signals are periodic, they can be represented as com-
plex exponentials. Therefore the j in the denominator of Equation 3 indicates a
phase shift as well as the expected amplitude change. The most important feature
of this equation though is that the amplitude of Vout decreases as f decreases.

Now let’s examine the active filter. Because no current can be drawn by the
op-amp’s inputs, there is only one value for current (i) in the system. The output
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voltage Vout must all be dropped across R2 because the op-amp tries to keep both
of its inputs at 0 V. The total input voltage must be dropped over the capacitor
and resistor for the same reason. This leads us to the following equations:

Vout = iR2, Vin =
i

jωC
+ iR1 (4)

Solving the first equation for i, substituting it into the second, and solving for Vout,
I find that

Vout =
Vin

1
R2jωC

+ R1
R2

(5)

Because I chose an R1 and R2 that were equal in resistance to four significant figures,
I can call that ratio of resistance 1. After that approximation, the equation for the
active and passive filters are identical. The time constant τ of these filters is RC,
so because I used a 100 Ω resistor and a 1 µF capacitor, the cutoff frequency should
be

1

2π ∗ τ
=

1

2πRC
=

1

2× π × 100 Ω× 1 µF
≈ 1592 Hz (6)

Although these equations say that the two types of filter should have the same
behavior, there are important differences between them. First of all the passive
filter has only one energy storage element (the capacitor), and is therefore a first-
order system. The active filter has the capacitor that you see and another one in
the op-amp. These two capacitors can’t be combined into one equivalent capacitor
because of a network of diodes in the op-amp, so they are two separate energy storage
elements and therefore the active filter is a second-order system. This means that
the active filter has the potential to change its output amplitude over a smaller
range of frequencies, but it is also vulnerable to the effects of resonance.

Experiment

The original goal of this experiment was to look for differences in behavior of the
two filter types under ”extreme circumstances,” which could mean one of a few
things. Operational amplifiers have several weaknesses, one of which is that they
can’t produce an output potential that is higher than the potential supplied to
them (the ”saturation potential”). I intended to stress this aspect of op-amps by
increasing the amplitude of the input signal past the saturation potential, but as I
was increasing the input signal’s amplitude, I started to notice unexpected behavior
long before I got to the saturation potential and decided to study that instead.

The experimental setup consisted of the two circuits described in the Figures 1a
and 1b, supplied with an input square wave with a frequency of 187 Hz and an
amplitude of 10 V, far below the op-amp’s saturation potential of 15 V. Output
voltage was read by an oscilloscope (LabJack U3-HV) sampling at 20 kHz.
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Results

Let us consider the filters as systems that take input signals xp(t) and xa(t) (for
passive and active systems respectively) and transform them into output signals
yp(t) and ya(t). In the frequency domain, these signals are Fourier coefficeints
Xp(jω), Xa(jω), Yp(jω), and Ya(jω). The system (the filter) can be represented
by the ”transfer function” H(jω) such that Y (jω) = H(jω)X(jω). Both sides of
this equation can be multiplied by their complex conjugates. Because the Fourier
coefficients of a signal multiplied by their complex conjugates constitute the power
spectral density (PSD) of the signal, I find that the way the filter affects the mag-
nitude of the input signal is √

PSDy

PSDx
= |H| (7)

and this applies to both the passive and active signals. Taking the power spectral
densities of the input and output, I found that there were large spikes at the odd
harmonics (odd multiples of the input signal’s fundamental frequency of 187 Hz),
and small spikes at the even harmonics. This means that a large amount of power
is carried by the frequency components that are odd multiples of the fundamental
frequency, and a small amount of power is carried by the frequency components
that are even multiples of the fundamental frequency. Graphing the values of |H|
and fitting an exponential function (the function that fit best), I find the following
figures.

From these, I can see that the passive filter affects the odd and even harmonics
in much the same way, attenuating low frequency components and not attenuating
high frequency components. The curve that fits |H| for the passive filter is a very
gently rising exponential though, meaning that the filter does not do an especially
good job of blocking all components below the cutoff of 1592 Hz and transmitting
all components above that frequency. The graph of |H| for the even components is
much noisier because they come from noise in the square wave. The power spectral
density of a square wave (the input signal) should ideally not contain any even
harmonics, but the real input signal did due to noise. This means that the even
components were noisier than the odd components, as we can see by the low fit
quality. I don’t have quantitatve data for the fit quality because the residuals on
the plot of |H| are not distributed even close to normally, so I don’t have a way to
estimate their standard deviation.

The graph of |H| for the odd frequency components of the active filter looks bet-
ter than that of the even filter because the fit function has a much higher maximum
slope. This means that the cutoff frequency is a sharper barrier—the active filter
does a better job of attenuating signals below a certain frequency and transmitting
signals above it. This is because the active filter is a second-order system. This area
of high slope though occurs at a lower frequency than the specified cutoff frequency
because the active filter exhibits what appears to be resonance right around the
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Figure 2: Transfer functions for the passive filter

(a) Graph of the magnitude of the trans-
fer function of the passive filter on odd
multiples of the input wave’s fundamental
frequency. The fact that the fit function
follows the data closely means that the
filter doesn’t introduce much noise, but
because the fit function rises so slowly,
this is not a wonderful filter. Fit residu-
als are shown in the small plot above the
main graph.

(b) Graph of the magnitude of the trans-
fer function of the passive filter on even
multiples of the input wave’s fundamen-
tal frequency. There is a lot more noise
in this fucntion because the even multi-
ples of the input wave’s fundamental fre-
quency are entirely noise and should not
exist at all in a perfect theoretical world.
Square waves’ power spectra should not
contain any amplitude at even multiples
of the fundamental frequency.

cutoff frequency. All second-order systems exhibit a phenomenon called resonance,
or the tendency of a system to oscillate at much greater than normal amplitude
when driven at a certain frequency called the system’s natural frequency. I say that
the phenomenon in question appears to be resonance because there is a small region
right around the cutoff frequency where the value of |H| is abnormally high, and
there is only one such region.

The graph of |H| for the even frequency components of the active filter is ex-
tremely different from the corresponding passive graph. This is because the active
filter is far more sensitive to noise than the passive one. The operational amplifier
in the active circuit amplifies the difference between the potentials of its inputs by
a very large factor to produce its output. This means that if there is noise in the
input signal, it will be magnified immensely by the op-amp and produce a lot of
noise in the output signal. The reason this noise appears much more pronounced
in the lower frequencies is because it is damped out in the higher frequencies by
resistance in the circuit.

The other component of the predicted effects of the filters is a phase shift. Look-
ing at the time domain signals, I looked at the time at which the input signal (square
wave) exhibited a dramatic rise, and saw that the output signal exhibited a dramatic
rise at exactly the same time, to my measurement resolution of 0.0001 seconds. This
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Figure 3: Transfer functions for the active filter

(a) Graph of the magnitude of the trans-
fer function of the active filter on odd mul-
tiples of the input wave’s fundamental fre-
quency. This function has a much higher
slope around the cutoff frequency than its
passive counterpart, but it exhibits both
resonance and high amplification of noise.
Again, residuals are shown above the main
graphs.

(b) Graph of the magnitude of the trans-
fer function of the active filter on even mul-
tiples of the input wave’s fundamental fre-
quency. Here amplification of noise is the
dominant factor because even multiples of
the input wave’s fundamental frequency are
so noisy. At high frequencies, the noise is
largely damped out by resistance in and out-
side of the op-amp.

tells me that there is no detectable phase shift from input to output in either signal.

Conclusion

This experiment shows that there are both benefits and drawbacks to using either a
passive or active high-pass filter. Passive filters introduce very little if any noise, but
the cutoff frequency is not an absolute wall to signals of lower frequency. Because
a passive high-pass filter is a first order system, the graph of amplitude attenuation
vs frequency has a low maximum slope. Active filters, being second-order systems,
solve this problem with higher slopes, but they greatly amplify noise in the input
signal. If one wants to use an active filter in any sort of application, I advise that
they use either a very low-noise or low-amplitude input signal.
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