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No Information without Uncertainty Estimation! 

 
LAX is about 59 minutes from Harvey Mudd by car.  You can learn this from the 

driving directions on Google Maps, and it’s a useful piece of information if you are 
checking out possible travel bargains.  But what if you already have reservations out of 
LAX and need to know when to leave campus for the airport?  Then you’d better know 
that the drive can easily take as little as 45 minutes or as much as an hour and a half, 
depending on factors you can’t possibly determine in advance – like an accident in which 
a truckload of lemons is accidentally scattered across the 105 Freeway.  You will wish 
you had been told (preferably before booking your tickets) that, while it may take you an 
hour and fifteen minutes in reasonable traffic, the westbound traffic is never reasonable 
between seven and ten o’clock on a weekday morning. 

Similar comments apply to a vast array of numbers we measure, record, and trade 
back and forth with each other in our everyday affairs.  I’ll be off the phone in five 
minutes – or maybe two to eight minutes.  The “freshman fifteen” could actually be three 
or twenty-three.  We set the oven to 350o, knowing that the actual temperature might be 
only 330o when the preheat light goes off. 
 Just about every number in our lives is actually a stand-in for a range of likely 
values.  Another way of putting this is to say that every value comes with an uncertainty, 
or an error bar.  I’ll be off the phone in 5±3 minutes, the oven temperature is 350±25 
degrees, and so on.  Sometimes a quantity does have zero error bars:  I have exactly one 
brother.  More often, though, numbers have error bars and we ignore them only through 
the ease of familiarity.  I know my oven temperature is close enough to bake good 
cookies, so I don’t care to remember (or to know in the first place) just how close it is.   

When a situation is unfamiliar, though, suddenly it can be very important to ask 
about the error bars.  Without error bars on the travel time to LAX, you may very well 
miss your flight.  Your dorm room may be about seven feet wide, but lugging home that 
used couch will seem pretty dumb if the room is actually 7 feet ± 5 inches!  And it’s not 
just numerical values that can have uncertainties attached to them.  You can afford to 
play video games tonight instead of studying for a chem exam… maybe.  Your roommate 
thinks the person down the hall finds you attractive, but are you sure enough to act on it? 
 
 Original work in science and engineering will take you into unfamiliar situations 
where you absolutely must know how much confidence to place in a result – either a 
measured number or a final conclusion.  Knowing the uncertainty of a measurement can 
tell you whether your levee will withstand a Category 5 hurricane with 95% or 45% 
confidence.  You can decide whether a new treatment is effective in curing patients, or 
whether three test subjects just happened to have mild cases in the first place.  You can 
tell whether your lab has discovered a new law of particle physics or just taken a few 
fluke readings with unreliable equipment. 
 
 Uncertainties – how to think about them, estimate them, minimize them, and talk 
about them – are an important aspect of Physics 22.  We will learn a handful of statistical 
definitions and methods, but we will concentrate on whether they make sense rather than 
whether we can justify them rigorously.  Our goal is to equip ourselves to talk and think 
reasonably about the experimental situations we encounter in the lab each week.   
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What Is an Error Bar? 

 
In a laboratory setting, or in any original, quantitative research, we make our 

research results meaningful to others by carefully keeping track of all the uncertainties 
that might have an appreciable effect on the final result which is the object of our work.  
Of course, when we are doing something for the very first time, we don’t know 
beforehand what the result is going to be or what factors are going to affect it most 
strongly.  Keeping track of uncertainties is something that has to be done before, during, 
and after the actual ‘data-taking’ phase of a good experiment.  In fact, the best 
experimental science is often accomplished in a surprisingly circular process of designing 
an experiment, performing it, taking a peek at the data analysis, seeing where the 
uncertainties are creeping in, redesigning the experiment, trying again, and so forth.  But 
a good rule is to estimate and record the uncertainty, or error bar, for every measurement 
you write down. 
 What is an error bar and how can you estimate one?  An error bar tells you how 
closely your measured result should be matched by someone else who sets out to measure 
the same quantity you did.  If you record the length of a rod as 95.0±0.05cm, you are 
stating that another careful measurement of that rod is likely to give a length between 
94.95cm and 95.05cm.  The word “likely” is pretty vague, though.   A reasonable 
standard might be to require an error bar large enough to cover a majority – over 50% – 
of other measurement results.  On the other hand, if I am betting you $100 that your 
result will be within my range, maybe I ought to give a larger error bar so that I’ll be 
covered 99% of the time.  Error bars, then, should be larger when it is more crucially 
important for them to cover all the possibilities. 
 However, it’s convenient to have some sort of standard definition of an error bar 
so that we can all look at each other’s lab notebooks and quickly understand what is 
written there.  One common convention is to use “one sigma” error bars; these are error 
bars which tell us that 68% of repeat attempts will fall within the stated range.  The 68% 
figure is not chosen to be weird, but because it is easy to calculate and convenient to 
work with in the very common situation of something called ‘Gaussian statistics.’  We 
will not go into this in detail, but here’s one example of how useful this error bar 
convention can be:  for many, many situations, if 68% of repeat attempts are within one 
error bar of the initial result, 95% will be within two error bars. 

The essential point here is that your error bars should be large enough to cover a 
majority, but not necessarily a vast majority, of possible outcomes.  If someone does an 
independent measurement of your quantity and finds a value outside your error bars, you 
can be a little bit surprised.  If someone finds a value different from yours by four error 
bars, you should be deeply disturbed.  

Finally, an error bar estimates how confident you are in your own measurement or 
result.  It represents how well you did in your experimental design and execution, not 
how well the group at the next bench did, or how well your lab manual or professor think 
you should be able to do.  Error bars are part of your data and must follow logically from 
what you did and the observations you made; anything else is fraudulent data-taking. 
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Random Errors, Systematic Errors, and Mistakes 

 
There are three basic categories of experimental issues that students often think of 

under the heading of experimental error, or uncertainty.  These are random errors, 
systematic errors, and mistakes.  In fact, as we will discuss in a minute, mistakes do not 
count as experimental error, so there are in fact only two basic error categories:  random 
and systematic.  We can understand them by reconsidering our definition of an error bar 
from the previous section. 

  
An error bar tells you how closely your measured result should be matched by 

someone else who sets out to measure the same quantity you did.  How is this mysterious 
second experimenter going to measure the same quantity you did?  One way would be to 
carefully read your notes, obtain your equipment, and repeat your very own procedure as 
closely as possible.  On the other hand, the second experimenter could be independent-
minded and could devise an entirely new but sensible procedure for measuring the 
quantity you measured.  Either way, the two results are not likely to be exactly the same!! 

A careful repetition of your own procedure will give slightly different results 
because of random error.  There will be slight and uncontrollable differences from one 
trial to another.  Of course, these uncontrollable differences may not be strictly random in 
their causes.  Maybe the air conditioning happens to blow a slight puff of air on your 
setup the first time.  Maybe a speck of lint falls on the second experimenter’s ruler and 
causes them to slightly mis-estimate a string’s length.  But, however these differences 
arise, they cause different results when a single procedure is repeated several times.  The 
differences don’t trend in any particular direction, and their causes are subtle and hard to 
identify, let alone control, in the lab – so we call them random. 

When a second experimenter designs her own, independent procedure to measure 
your quantity, the two of you can have differing results because of random error but also 
because of systematic error.  Systematic error arises when your experimental procedure 
and/or apparatus somehow cause all your measurements to be shifted away from the true 
value of the quantity you set out to measure.  A systematic error happens in the same 
direction and the same (or similar) size in all your data, so its effect only shows up when 
an alternate measurement procedure is compared to yours. 

An example:  Suppose we want to know how tall a bean sprout is twenty days 
after planting.  We plant ten sprouts, care for them all the same way, and then measure 
their height twenty days later, using a ruler.  The sprouts, though planted and cared for 
identically, are not all measured at exactly the same height.  We can calculate an average 
height, but it’s fairly certain that a repeat trial of ten new sprouts won’t give exactly the 
same average.  There’s random error because not all sprouts behave identically.  

 However, later on we realize that we didn’t record (or remember) what time of 
day we did either the planting or the measuring.  We meant to record height after twenty 
days, but perhaps it was actually 19.6 days or 20.5 days.  The heights we measured were 
all off in the same way – either all too young (too short) or too old (too tall) – but we 
have no way of knowing which way they were off, or by how much.  This is a systematic 

error in our measurement. 
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The example of the bean sprouts brings us to the mistake category.  Mistakes are 
things that go wrong in an experiment that can and should be fixed.  They don’t count as 
experimental errors, since the experimentalist (you) fixes them before reporting a final 
result and uncertainty!  Some mistakes are easier to fix than others.  Suppose we 
conducted the bean sprout experiment but measured after only nineteen days by mistake.  
Obviously we’d realize our error that night, and go back and measure properly on the 
twentieth day.  Or suppose we forgot to measure on the twentieth day, and could only get 
there one day late.  This mistake would be harder to fix, but we could do it.  We might 
measure all the heights on the twenty-first day, then measure them again on the twenty-
second day.  This would give us an idea of how much the sprouts grew per day, and we 
could estimate the actual twentieth-day heights by subtracting appropriately from the 
twenty-first day measurements. 

Of course, if we measured the sprouts on the wrong day and then put the notebook 
away in a drawer while we went to Disneyland and the sprouts dried out and died… then 
the mistakes would take MUCH longer to correct.  A cardinal rule of experimentation:  
the more you think about your results as you go, the easier it will be to correct your 
mistakes.  It’s tempting to say that you won’t make mistakes in the first place, and 
therefore won’t need to rethink midcourse and correct your mistakes… but it simply is 
not true.  Consider the following quote:   

“Fast turnaround time has always been important to me.  Mistakes are 
unavoidable, so I wanted an apparatus that would allow mistakes to be corrected 
as rapidly as possible.” 

The quote comes from Steven Chu’s 1997 lecture on his acceptance of the Nobel Prize in 
Physics.  Maybe you won’t make mistakes, but the rest of us do it all the time.
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How to Estimate Error Bars in Data 
 
Since we are not going into Gaussian (let alone other) statistics, our definition of an error 
bar remains loose enough so that we should not be too concerned over the exact 
numerical value we assign to error bars in our experiments.  However, we do want to 
base our error bars on experimental reality, so they can be useful in clarifying our data 
analysis and results in the end.  The overall uncertainty of a result tells us how much trust 
to place in the specifics of the result.  Beyond that, however, identifying the major 
source(s) of the final uncertainty can guide us in spending our time and effort 
productively, should we wish to redesign the experiment for better results in the future. 
 
So:  How do we assign an error bar to a measurement taken in the lab?  Several specific 
but common situations are covered below.  The zeroth rule of error estimation, though, is 
that we should always think about the meaning of an error bar… and assign an error bar 
that makes sense based on that meaning. 
 
 One of the simplest sources of uncertainty is the resolution or quoted accuracy of 
a measuring device.  Many lab devices, such as electrical meters and mass balances, have 
resolutions specified by their manufacturers.  These device uncertainties can be read off 
the device (sometimes on the bottom surface) or in its manual.  However, something as 
simple as a meter stick also has an effective device resolution.  If the stick is marked 
every millimeter, for example, then if an object ends between the 101- and 102-mm 
marks it is probably unreasonable to expect observers to do any better than choosing 
which mark is closer.  In this way, an object that is truly 101.4mm long would be 
measured at 101mm, while an 101.8-mm object would be recorded as 102mm long.  A 
reasonable error bar for the device resolution of the meter stick, then, would be +/- 
0.5mm.  A device-resolution uncertainty can be estimated for just about any measurement 
device by considering the device’s construction and the reliability of a reasonable 
observer. 
 
  Another source of uncertainty, sample variation, becomes important when we 
measure a phenomenon that just doesn’t quite come out the same every time.  In the 
hypothetical bean sprout study discussed above, we conduct the experiment on more than 
one plant because we suspect there is random variation from one bean sprout to another.  
Measuring several plants and taking the mean of their heights seems like a natural way to 
find out something about average bean sprout growth.  Just as importantly, though, 
measuring several plants gives us an idea of how strong the random variation might be – 
and thus how far off our several-plant average might still be from the “true” mean.  If we 
measure twenty plants and all twenty are the same height to within a millimeter, we can 
be fairly certain that we know the average bean sprout height to better than a millimeter 
(barring systematic errors).  On the other hand, if we measure two plants and their heights 
are 21.00cm and 22.00cm, we should be pretty wary of reporting the overall average to 
be 21.50cm.  In the next section we will develop formulas for quantities called the 
standard deviation and standard error that can be used to find random uncertainty in a 
quantity based on repeat sampling like this.  
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 The error estimation techniques we have just discussed apply primarily to random 
errors.  How can we estimate systematic errors?  First we must consider possible causes 
of systematic error, then estimate reasonably – from theoretical knowledge, additional 
experiments, or prior experience – how much effect these causes might have.  If we are 
measuring the length of a metal rod, the length might reasonably depend on temperature.  
Perhaps the temperature in the room could be as much as three degrees different from 
standard ‘room temperature’ definitions.  How much shift could that cause in the rod’s 
length?  If we have no experience or reference materials to guide us, we could 
deliberately cool the rod in a refrigerator, measure the new length, and estimate roughly 
how much length change occurs per degree.  This technique of deliberately exaggerating 
an effect to estimate its significance is often useful in dealing with systematic errors. 
 

There is one more cardinal rule of error sources:  “human error” is never a 
legitimate source of error.  That phrase is completely uninformative, and should never be 
used as an insurance or catch-all in discussing an experiment.  Humans cause error, of 
course, but in specific ways that can be described and quantified. 

 
 
 
 
 
 
 
 
 
 
 

“HUMAN 

ERROR” 
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Sample Mean, Standard Deviation, and Standard Error 

 
In this section we develop formulas to quantify a measurement and its random 

error, based on taking the measurement repeatedly in what is supposed to be the same 
way (this is sometimes called sampling).  This is probably the most mathematical section 
of our error analysis discussion, but even here we will give reasons why our formulas are 
reasonable without actually rigorously deriving them. 
 

Imagine we sample a quantity repeatedly, yielding measurements ),...,,( 21 Nxxx .  

While we try to make all the measurements identical, random variation shows up in our 
list, so to estimate an overall result we quite naturally take the mean: 
 

     
N

x

x

N

i

i∑
== 1 .    (Eq. 1) 

 
 
Perhaps we have done N=10  repetitions.  If we kept going to N=20 how would the value 
of x  change?  What if we kept going even longer?  In other words, how much 
uncertainty is left in our measurement because of our limited sampling of the random 
variation?  To answer this question, it’s useful to step back a bit first. 
 

When we want to combine all N measurements into a single representative result 

xrep, it’s easy and natural to take the mean:  xxrep = .  But why is x , as defined in 

Equation 1, really the best candidate for xrep?  It would be nice to come up with some 
measure of deviation which is minimized, sample-wide, by this choice.  Perhaps we 
should be trying to minimize the distance between the individual data points and xrep.  

That is, maybe we should minimize ∑
=

−
N

i

repi xx
1

.  This is a nice thought, but it turns out 

that xxrep =  does not minimize this particular deviation measure… so this must not be 

the right deviation measure to think about if we are taking sample means.  On the other 

hand, it turns out that ( )∑
=

−
N

i

repi xx
1

2
 is minimized by taking xxrep = .  To see this, 

we can differentiate the expression with respect to xrep and set the derivative equal to 
zero: 
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Indeed, the sample mean is the representative value that minimizes the sum of the squares 

of the individual deviations.  So if the sample mean is a good measure of the overall 
result, something related to this summed-squared deviation should be a good measure of 
the overall result’s uncertainty! 

Let’s begin by imagining that we take an (N+1)
th measurement. How far from the 

previous mean is this single, new measurement likely to be?  Well, we can use the 
summed-squared deviation to help us guess, but probably we should divide the sum by N 

first to turn it into a mean-squared deviation:  ( )∑
=

−
N

i

i xx
N 1

21
.  This still isn’t a good 

measure of deviation, since it is still squared – if the measurement is a length in 
centimeters, for example, this thing is in cm2 so it can’t be a deviation.  Therefore we’ll 

take the square root:  ( )
2

1

1
∑

=

−
N

i

i xx
N

 is called the root mean square deviation, or r.m.s. 

deviation for short, and it’s a useful measure of how far from the mean a single 
measurement is likely to fall.  It turns out that, by doing proper statistics, one comes up 
with a slightly more generous (i.e., larger) estimate of individual deviation from the 
mean.  Thus we define a quantity called the standard deviation: 

 

∑
=

−
−

==
N

i

i xx
N

deviationstd
1

2)(
1

1
. σ .   (Eq. 2) 

 
The standard deviation is used to estimate how far from the mean a single measurement 
is likely to fall. 
 
 Originally, though, we were trying to answer a different question.  We wanted to 
know how far our calculated mean was likely to be from the true, or ideally-and-
infinitely-well-sampled, mean.  This is the uncertainty of our final (mean) result, and we 
call it the standard error or standard deviation of the mean.  If we increase the number 
of samples N, the standard deviation defined in Equation 2 will not in general get smaller.  
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But certainly taking more measurements in our sample ought improve the standard error.  
Each new measurement we add won’t necessarily make x  closer to the ideal, but in 
general we’ll creep and wander towards the ideal value.  Therefore, the standard error is 
given by:   
 

                
N

xx
N

N
ErrStd

N

i

i∑
=

−
−

== 1

2)(
1

1

..
σ

.   (Eq. 3) 

 
 

To sum up this rather lengthy discussion of repeated trials or samples: 
In the presence of sample variation, the true value of a quantity can often be 

calculated by taking the mean of N repeated trials.  In that case, the standard error 

as defined in Equation 3 is a good estimate for the uncertainty of this mean. 

 
CAUTION:  Students are often tempted to take a set of repeated trials and summarize 
them as a mean value plus or minus the standard deviation, rather than plus or minus the 
standard error.  Perhaps this happens because ‘standard deviation’ is a more familiar term 
than ‘standard error,’ and many calculators and software packages have built-in functions 
for standard deviation but not for standard error.  If you find yourself falling into this 
trap, contemplate the following example which illustrates the rough significance of 
standard deviation vs. standard error: 
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Once we have conducted 
survey 1… 
 
Standard error describes 
how our mean might 
reasonably change if we 
threw out survey 1, did a 
second survey, and used the 
survey 2 mean instead. 
 
Standard deviation describes 
how far from the mean a 
single additional sample 
might reasonably fall. 
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How and When to Throw Out Data 

 
Yes, there are times when it is legitimate to throw out a data point.  From time to 

time, one repetition of an experiment gives a result so completely out of line with the 
other trials that we know there must have been an unidentified problem of unusual size.  
When our data looks like a tight cluster with one (or two) faraway outliers, it is all right 
to throw away the outliers just because they are so far from all the rest of the data. 

Likewise, when our repetitions produce results that cluster in two different places, 
we can sometimes think carefully and figure out what we changed or did wrong in half 
the trials.  If we have good reason to think half the data is contaminated and the other half 
is good, we can throw out the contaminated half. 

HOWEVER, it is not legitimate to throw away data points based on a comparison 
between experimental results and what we expected to get, either based on theory or on 
someone else’s reports.  This kind of throwing out is habit-forming and very dangerous, 
since a habit of this sort will prevent us from ever discovering anything new or surprising 
on our own.  It’s easy to fall into the trap of fudging data (or inflating error bars) to match 
an experiment to theory.  The best of scientists have done it, as evidenced by another 
quote from Steve Chu’s Nobel Lecture, which is remarkable for its candid discussion of 
his experiences in atomic physics: 

“Our first measurements showed a temperature of 185µK, slightly 
lower than the minimum temperature allowed by the theory of Doppler 
cooling.  We then made the cardinal mistake of experimental physics:  
instead of listening to Nature, we were overly influenced by theoretical 
expectations.  By including a fudge factor to account for the way atoms 
filled the molasses region, we were able to bring our measurement into 
accord with our expectations.” 

Chu’s group, which had already demonstrated several milestones of atomic physics, was 
actually observing an effect now known as sub-Doppler cooling.  Bill Phillips and his 
group measured the same effect but believed in their result, and Chu and Phillips each 
received 1/3 of the Nobel in 1997.  (Theorist Claude Cohen-Tannoudji was awarded the 
final 1/3 of the Prize that year.) 
 

Habits are hard to break.  Make good habits now, and don’t adjust your data to 
match your expectations.
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Combining Unrelated Sources of Error 
 
In most experimental situations, if we look hard enough, there are many different 

sources of uncertainty.  The simplest measurement example we have considered so far is 
that of finding the room-temperature length of a metal rod.  If we use a meter stick with 
millimeter markings, an uncertainty of ±0.5mm is associated with the measurement 
device.  We might estimate an uncertainty of ±0.01mm from unknown temperature 
variations.  An uncertainty of ±0.8mm might be estimated from doing repeated trials – 
presumably they’re different because we have difficulty holding the rod straight against 
the meter stick each time, or because the rod is slightly longer on one edge than on the 
other.     

What can we report for the overall uncertainty in the length of our simple metal 
rod?  We must somehow come up with a rule for how to combine several uncertainties 
which are unrelated to each other, but which all influence a single outcome.  We could 
add these uncertainties together, for an overall uncertainty of ±1.31mm, but this is too 
pessimistic.  Adding the uncertainties assumes a kind of worst-case scenario in which the 
unrelated error sources all end up producing errors in the same direction.  More likely, 
one cause makes the measurement too small, another makes it too large, etc.   

We could simply use the largest single uncertainty and neglect all the others, 
giving us a length uncertainty of ±0.8mm.  This, however, is too optimistic.  Surely the 
errors do sometimes combine to make the overall result worse than any one contributing 
factor. 

To combine unrelated error sources, we need a way to add them together without 
neglecting any of them, and without forcing them to be in the same direction as each 
other (or opposite each other, either).  But wait!  In another area of math we are already 
familiar with adding things that are not in the same direction as each other:  We know 
how to add together mutually perpendicular vectors.  If a vector a is perpendicular to a 
vector b, then the vector sum c has a length given by the Pythagorean theorem:  

    22
bac += . 

And this is how we add together unrelated uncertainties as well.  If a measurement has 

two unrelated sources of uncertainty 1δ  and 2δ , then the overall uncertainty is given by  

2

2

2

1 δδδ += .  The method extends to deal with more than two unrelated error sources 

as well.   
 
If a quantity has n unrelated (or independent) sources of  

uncertainty ),...,( 21 nδδδ , then the overall uncertainty is  

given by 22

2

2

1 ... nδδδδ +++=  .       (Eq. 4) 

 
This way of combining independent errors is known as adding in quadrature. 
 

Returning to the example of our simple metal rod, we can see that adding 
our three errors in quadrature gives an overall uncertainty of  ±0.9mm, or 
±0.94mm if we keep one more decimal place.  It’s also clear that the temperature-
related uncertainty of ±0.01mm is completely unimportant compared to the other 
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two.  It is often true that one or two error sources are much more important than 
all the others, and dominate the overall uncertainty of an experimental result.  
When this is the case, it’s not very important to carry out a heroic error 
calculation that includes all error sources!  Each identified error source should be 
recorded and estimated, but as soon as it can be clearly labeled as unimportant, it 
can be dropped from calculations in the interest of time and sanity.   
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Error Propagation in Calculations:  Functions of a Single Measured 

Quantity 
 
 We have discussed methods for finding the uncertainty for a direct 
measurement.  Often, however, we must do some calculations with our raw data 
to arrive at the result we are actually interested in.  The calculation may be as 
simple as measuring the diameter of a circle and dividing by two to find its 
radius… but once we use any measured quantity in a calculation, we have to keep 
track of the uncertainty in our calculated result due to uncertainty in the original 
measurement.  Keeping track in this way is called error propagation.  There is 
really only one basic formula that governs error propagation, and we will develop 
it right now. 
 Let’s make this problem general by saying we have a quantity, x, which 
we can measure directly with uncertainty xδ .  There is a function )(xf  we are 

interested in knowing.  Being uncertain about x  will clearly cause some 

uncertainty in f, so we will call this uncertainty fδ . We can sketch a graph below 

that will give us some inspiration about how to calculate δf: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the sketch above, it is tempting to suggest a simple rule like xf δδ = .  But 

we can make a second hypothetical sketch: 
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In the second sketch, δf is clearly much smaller than in the first sketch, even though δx is 

exactly the same in both cases.  Why is δf small in the second case?  Because the function 
f(x) is flat, or very nearly so, near the value of x we care about in the second drawing.  
Aha!  The uncertainty in f depends on the uncertainty in x, but also on the steepness of 
the function f in the spot where we are evaluating it.  We can express “the steepness of 
the function f ” in more precise and mathematical terms – it is the function’s derivative, 

dx

df
.  Thus we have an error propagation rule for any function of a single variable:  

 
dx

df
xf δδ = .       (Eq. 5) 

 
The absolute value signs are there because error bars give the size of errors, not their 
direction, so all error bars are expressed as positive numbers. 

 

Example: if we measure the diameter of a circle as cmd 1.00.1 ±= , the radius is 

cm
d

r 5.0
2

== , with an uncertainty of cmdr 05.0
2

1
== δδ .  However, the area of that 

circle is 22 79.04/ cmdA == π , with an uncertainty of 216.04/2 cmddA == πδδ .  

Notice that we write the final result as 216.0 cmA =δ  rather than 2...1570796.0 cm , since 
with an uncertainty in the first decimal place it is a clear waste of space to write down 
many more.  By writing all numbers ± uncertainties we can afford to be lax about 
significant digits, but we shouldn’t offend common sense with long strings of irrelevant 
numerals.
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Describing a Data Set with a Function:  Graphing and Chi-Square Fitting 
 
 Often several different measurements, with different individual uncertainties, 
must be combined to answer a final question in an experiment.  For example, imagine we 
are conducting our bean sprout experiment (again), but a colleague has suggested that 
growth in bean sprouts is linear over time.  We now wish to test whether growth is linear 
or not, and if it is, find a value for the height increase per day.  A general plan of action is 
to take average heights of our sprouts at 10, 20, 30, and 40 days, then make a graph of 
average height vs. time, see if the data look like a straight line, and find the slope of that 
line if so. 
 However, with our new understanding of uncertainties we can make our plan 

much more specific and quantitative.  First of all, we have a data set { }ii hh δ±  of heights 

measured at times { }it , so any graph we make should show the error bars as well as just 

the data points.  Now, we need some way to choose the best possible line bmttH +=)(  

to go with our data.  That is, we need to find the best possible values of the 

constants ),( bm  based on all four of our data points.  In this situation, ),( bm  are called 

parameters – they are constants in the formula for the line, but they are constants whose 
values we will adjust to suit ourselves.   
 Earlier, we developed the concept of standard deviation by considering a data set 

{ }ix  of values which were “supposed” to be the same.  We wanted to represent the whole 

data set by a single value, xrep (which for us was x ).  Now, we have a data set { }ih  in 

which the individual values are not supposed to be the same, but are supposed to be 

represented by a single function )( itH .  In our earlier discussion, the mean value x  was 

found to minimize the standard deviation σ .  In a similar spirit, what quantity do we 

want to minimize by our choice of the function H – that is, our choice of ),( bm  – now?  

Perhaps we should choose ),( bm  to minimize a summed-squared deviation, like 

( )∑
=

−
N

i

ii tHh
1

2
)( .  This is a lot like what we did before, so it seems like a good starting 

place.  In fact, many fit routines (including the “trendline” in Microsoft Excel) work on 
the principle of minimizing exactly this quantity.  Such routines are called least squares 

fitters.  However, least squares fitting is not actually a fair treatment of our data; we have 

uncertainties ( ihδ ’s) for each data point, and the uncertainties might not be the same as 

each other.  If we’re very certain of the average height after 10 days and not at all certain 
of the 40-day average, is it fair to ask the line to go equally close to both data points?  We 
need to revise our strategy to take uncertainties into account.   
 If we have several data points with different error bars, the fair strategy is to find 

),( bm  which make the line miss each data point by as few error bars as possible.  This 

criterion is pretty much what motivates a process called chi-square fitting, which finds 

parameters to minimize the quantity chi-square (χχχχ2222)))): 
 

∑
=

−
=

N

i i

ii

h

tHh

1
2

2
2

)(

))((

δ
χ .    (Eq. 6) 
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Chi-square fitting can be carried out for any type of function, not just a straight line.  
Several commercial data analysis packages have built-in chi-square fitting for linear and 
nonlinear functions.  Unfortunately, Microsoft Excel is not among these.  Igor and 
Kaleidagraph, two programs available on the computers in the HMC physics labs, can 
carry out chi-square fits when proper error bars and instructions are given to them.  You 
will learn to do chi-square fits in Igor as part of Physics 22. 
 
 When a chi-square fit is done, the best-fit function (of the type we have specified) 
is plotted on the graph on top of the experimental data points.  The parameter values – in 
our example, the values of m and b – are given as well.  One wonderful thing about a chi-
square fit is that, in addition to values for the parameters, we also get uncertainties for the 
parameters.  In our example, doing a chi-square fit to our data points will allow us to read 

off a value m and an uncertainty δm for the growth per day of bean sprout plants.  Of 
course, the parameter values and uncertainties will only be legitimate if the input data 
values and uncertainties are legitimate themselves. 
 The second important output of a chi-square fit is the final value of chi-square 
itself, as defined in Equation 6.  While chi-square fitting finds the best-fit function of the 
type we have specified, the final value of chi-square can tell us whether or not that type 
of function is a good choice to describe the data in the first place.  After all, perhaps bean 
sprout growth just isn’t linear, and the best straight line is still a horrible match to the 
data! 
 To determine whether a function fits data well, we calculate something called the 

reduced chi-square ( 2~χ ): 

   
)#(#

~
2

2

parametersdatapts−
=

χ
χ .   (Eq. 7) 

 
The quantity in the denominator of Equation 7 is known as the number of degrees of 

freedom in the fit, so reduced chi-square is sometimes referred to as chi-square per 

degree of freedom.  The reason for the denominator is roughly as follows:  chi-square is a 
summed-squared deviation, and we’d like to judge a fit by an average rather than a sum.  
Thus it’s natural to divide by the number of data points.  On the other hand, if a function 
has many free parameters it can have many wiggles, and chances are it can wiggle 
through all the data points very nicely even if it has no fundamental relationship to the 
data.  Therefore, it’s sensible to deduct credit (so to speak) for the number of parameters 
in the function.  In our example of linear bean sprout growth, we have 4 data points and 
the function H(t) has two parameters m and b.  Therefore, in this example we have (4-

2)=2 degrees of freedom, and 2~ 22 χχ = . 

 What is a good value of reduced chi-square?  Well, imagine that our theoretical 

function really does describe our data.  Thus we expect the data values ( ih ’s) to be pretty 

close to the function values ( )( itH ’s).  However, we estimate that our measurement 

missed the true value of each hi by about δhi .  Even if a theory is exactly right, we 

expect our data to miss it by about one error bar for each point.  Examining 
Equations 6 and 7, we see that this translates roughly to a reduced chi-square value of 1.  
Thus a reduced chi-square value of around 1 indicates that the type of function we have 
used is a good description of our data.  Reduced chi-square values much larger than 1 
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suggest problems with the theory and/or experiment, while reduced chi-square values 
much smaller than 1 suggest over-inflated error estimates or mistakes in applying the chi-
square fit. 

Note that least squares fitting (as in Excel) completely misses the important 
features of chi-square fitting.  It does not calculate the true optimal parameters, it fails to 
produce an estimate of their uncertainty, and it does not give a good measure of whether 
a function is consistent with data (and error bars).  Straightforward least squares fitting is 
almost never the best basis for a truly quantitative experimental result.  Chi-square fitting 
itself is by no means always the best treatment for data and uncertainties, but it is fairly 
easy to understand and is a good default method for many situations.
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Concluding Remarks 
 

 There are many aspects of error estimation and analysis that we have not 
discussed in the preceding pages.  We will discuss additional subtleties, rules of thumb, 
shortcuts, and other techniques as they arise in the experiments of Physics 22.  Rigorous 
justifications of our techniques are reserved for future courses, or for independent reading 
and consultation with your instructor.  However, the principles presented above should 
provide you with a foundation for the quantitative treatment of uncertainty in 
experimental science.  Error analysis at the highest levels of experimental science 
continues to be a blend of rigorous statistics, careful observation, and plain old common 
sense.  One of the goals of your work in Physics 22 should be to develop this blend by 
means of practice.  Happy hunting!  
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Appendix A:   
Error Propagation in Calculations:  Functions of Several Measured Quantities 
 
 Real life is often not as simple as measuring x and finding f(x).  Many interesting 
things depend on more than one variable.  It can therefore be useful to consider a function 
g of several variables:  g = g(x,y,z,…).   

To find the value of g, we industriously go into the lab and measure all the 

independent variables xx δ± , yy δ± , zz δ± , etc.  We can calculate a value for g, but 

what is the uncertainty δg?  From our single-variable rule there is a contribution 
x

g
x

∂

∂
δ  

due to the uncertainty in x.  (We change the d’s to ∂ ’s to denote the partial derivative 
with respect to x, since g is a function of multiple variables.)  But there is also a 

contribution 
y

g
y

∂

∂
δ , and a contribution 

z

g
z

∂

∂
δ , and so on.  How can we combine all 

these?  The key lies in the realization that each uncertainty contribution is unrelated to the 
others; they are all independent, and not required to be in the same direction or opposite 
directions.  We have already learned how to combine unrelated (independent) errors – 
they add in quadrature!  Thus we can write down the full one and only rule of error 
propagation: 
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 as long as x, y, z, … are variables independent of each other. (Eq. 8) 
 
 
 Let’s take an example in which we wish to calculate the area of a rectangle.  We 
measure the length cm1.00.2 ±=l  and the width cmw 1.02.1 ±= .  The area is then 

24.2 cmwA == l , but it has an uncertainty 
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Notice an interesting implication of this calculation:  even though l  and w  have the 
same individual uncertainty, they have unequal contributions to the uncertainty of A .   



 22 

Appendix B: 

A Reality Check for Error Propagation:  Fractional Uncertainty 

 

In the previous section, we presented and at least partially justified Equation 8 for 
the uncertainty in a function of several variables, based on the uncertainties in each of the 
measured variables.  Armed with Equation 8, you need no other error propagation 
formulas – but for complicated functions it can be challenging or at least time-consuming 
to compute the final uncertainty, and it is useful to have some way of anticipating and/or 
reality-checking the answers you get.  For this purpose, one of the most powerful tools 
for quickly checking error bar results is the concept of fractional uncertainty. 

 

The fractional uncertainty in x is simply the name we give to the quantity (δx/x).  
Thinking in terms of fractional uncertainties is very useful, because the fractional 

uncertainty in many common functions (δf/f or δg/g) is similar to the fractional 
uncertainty of the variables.  While following Equation 8 is imperative for getting 
quantitatively correct uncertainties, considering fractional uncertainty is a much simpler 
way to see roughly what values those uncertainties should have. 

To illustrate the usefulness of fractional uncertainty, consider propagating errors 
(using Equation 8) in several simple and commonly-encountered functions.  First, we 
consider a product of two variables, possibly with a constant coefficient c: 
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In this case the fractional uncertainty in g due to each variable, x or y, is actually equal to 
the fractional uncertainty in that variable itself.  Or consider a slightly less 
straightforward relationship: 
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Here the fractional uncertainty in f due to x is not quite equal to the fractional uncertainty 
in x.  However, it is still comparable, and the relationship between them is a simple one.  
Many functions we encounter in nature are products and low-order polynomials of this 
sort; for them, comparing fractional uncertainties in functions and their variables can be a 
good way to arrive quickly at a roughly correct error propagation result. 
However, keep in mind that for some functions Equation 8 does indeed lead to fractional 
uncertainties in functions which are not at all similar to the fractional uncertainties in the 
variables.  For 01.005.0 ±=x radians, what are the value and the uncertainty of )cos(x ?  

For 1.05.3 ±=x cm and 1.04.3 ±=y cm, what are the value and uncertainty of yx − ?  

As a final cautionary note, for 110 ±=x  find the value and uncertainty in the function 
x

e . 


