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states appear naturally at the onset of superconductivity, consistent
with our experiment. On the basis of these symmetry arguments we
conclude that the present experiment provides strong evidence for
Cooper pairing with spin-triplet (p-wave) symmetry: a supercon-
ducting analogue of the A or A1 phases of superfluid 3He. The
distinction between unitary and non-unitary states in Sr2RuO4,
however, cannot be made with the present results, and has to wait
for further studies by other means. M
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Direct human influences on climate have been detected at local
scales, such as urban temperature increases and precipitation
enhancement1–3, and at global scales4,5. A possible indication of an
anthropogenic effect on regional climate is by identification of
equivalent weekly cycles in climate and pollution variables.
Weekly cycles have been observed in both global surface
temperature6 and local pollution7 data sets. Here we describe

statistical analyses that reveal weekly cycles in three independent
regional-scale coastal Atlantic data sets: lower-troposphere pollu-
tion, precipitation and tropical cyclones. Three atmospheric
monitoring stations record minimum concentrations of ozone
and carbon monoxide early in the week, while highest concentra-
tions are observed later in the week. This air-pollution cycle
corresponds to observed weekly variability in regional rainfall
and tropical cyclones. Specifically, satellite-based precipitation
estimates indicate that near-coastal ocean areas receive signifi-
cantly more precipitation at weekends than on weekdays. Near-
coastal tropical cyclones have, on average, significantly weaker
surface winds, higher surface pressure and higher frequency at
weekends. Although our statistical findings limit the identifica-
tion of cause–effect relationships, we advance the hypothesis that
the thermal influence of pollution-derived aerosols on storms may
drive these weekly climate cycles.

High concentrations of anthropogenic aerosols have been identified
over the North Atlantic Ocean8–10: a substantial amount of these
pollutants are advected from the urbanized eastern seaboard of
North America8,11. We note that urban centres have a strong weekly
pollution cycle7,12. This variability, nicknamed the ‘‘Sunday effect’’7,
is characterized by high late-week pollution levels as opposed to the
early week13 and, although still debated, is probably the result of car
driving13. United States and Canadian inventories confirm higher
weekday emissions as opposed to those of the weekend14.

If east-coast metropolitan areas display weekly pollution cycles
and advection of that pollution is occurring, corresponding pollu-
tion cycles should be evident at downwind monitoring stations. To
test this hypothesis, we used a 965-day (July 1991–January 1995)
air-quality data set for Sable island (Fig. 1) as an indicator of
pollution transport into the North Atlantic Ocean8. Concentrations
(in p.p.b.v.) of two pollutants were monitored: ozone (O3) and
carbon monoxide (CO; a tracer for anthropogenic pollution15).

Because certain statistical techniques require a normal distribu-
tion, all data were tested for significant deviations from normality
by computing standardized skewness and kurtosis coefficients16,17.
Atlantic pollution data sets met without transformation our sig-
nificance criterion of a ¼ 0:05 which is used for all tests in this
study. Barlett’s test of variance dispersion reveals no significant
difference in variance by day of the week. Displayed analysis is
limited to data from April to October; research indicates that this
period is most associated with ozone advection for the northern
North Atlantic8. Recognizing that some data may have significant
autocorrelation, we removed first-order autocorrelation from all
data and found insignificant effects on our results. First-order
autocorrelation results were also not significantly influenced by
the few intermittent runs of zeroes in the precipitation dataset. We
also adjusted the sample size for each analysis to reflect the potential
influence of first-order autocorrelation, and again found no funda-
mental change in our results.

A seven-day cycle is evident in both O3 and CO time series, with
the late week (Thursday–Friday) experiencing highest values of
pollutants and with lowest values associated with the early week
(Sunday–Tuesday). After the two pollutants were standardized and
combined into a single variable (Fig. 2a), a series of statistical
analyses confirm weekly cyclicity in the CO þ O3 variable. First, a
Student’s t-test indicated a significant difference in daily mean
concentrations between Monday and Thursday. Additional testing
(with a ¼ 0:0024) using the assumption of completely independent
daily data (to avoid the problem of multiplicity) still confirms the
significant difference between the two extremes of the week. Second,
spectral analysis identifies peaks in spectral density at seven days in
CO, O3 and CO þ O3 concentrations. Third, when the pollution
data are categorized into 127 weekly periods, a 7-day sine wave (first
harmonic) explains an average 50% of the variance in each weekly
period. Fourth, shorter (,61 days, July–September 1991) data sets
for Canadian Coast Guard lighthouses at Seal island, Nova Scotia
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and Cape Race, Newfoundland8, as well as Sable island, also indicate
significant differences in CO and O3 between early- and late-week
observations. Fifth, an independent pollution data set18 for Ber-
muda (where, owing to circulation, North American pollution
advection creates early spring maxima in CO and O3; ref. 11)
shows a similar, but out of phase, weekly cycle in March and April
with a mid-week pollution maximum. This phase shift in pollution
transport between Sable island and Bermuda may result from
changes in seasonal circulation strength and location.

Weekly cycles are associated with human activities rather than
with natural phenomena6. No meteorological mechanism has a
consistent seven-day return period. Consequently, identification of
seven-day cycles in climate variables, coupled with the pollution
cycle above, suggests direct anthropogenic forcing of regional
climate. Investigation of such linkages is not new; examination of
corresponding weekly cycles in rainfall and pollution date back to
192919. For the present investigation, two independent climate data
bases are examined. The first is a satellite record of daily precipita-
tion over the world’s oceans20.

Daily oceanic precipitation values are available from Microwave
Sounding Unit (MSU) channels 1, 2 and 3 as gathered by seven
separate TIROS-N satellites20 for 1 January 1979 to 31 March 1995.
For this study, data were analysed for all oceanic 2:58 3 2:58 gridcells
from 208 N to 608 N. An aggregrate subset of 12 grid-cells was
selected between 27.58 N and 42.58 N and within 58 longitude of the
North American coast (Fig. 1) to isolate potential effects of eastern-
seaboard pollution on oceanic precipitation. A fourth-root trans-
formation of that data set produced the required gaussian distribu-
tion although our choice of transformation did not significantly
affect our fundamental results. Aggregation removed potential
spatial dependency problems21, and no difference in variance as a
function of day was apparent.

For the hemispheric oceanic data set averaged over the 17-year
time period, any given day comprises ,14.3% (one-seventh) of the
weekly total. However, the aggregated near-coastal grid-cells show a
distinctive intra-weekly variability. The greatest precipitation for
these near-coastal grid-cells occur on Saturdays (658 mm yr−1,
16.0%) while Mondays receive only 538 mm yr−1 (13.1%) (Fig.
2b). Consequently, Saturday precipitation averages 22% higher
than Monday precipitation.

Statistical tests confirm these findings. First, a one-tailed t-test
indicates that the difference in means between Monday and Satur-
day is significant. Second, when the satellite rainfall estimates are

categorized into 847 weekly periods, a 7-day sine wave (first
harmonic) explains an average 40% of the variance in each weekly
period. Third, spectral analysis confirms the existence of a seven-day
periodicity.

Fourth, the weekly cycle is also apparent downwind (east) of these
grid-cells. A set of grid-cells for the mid-Atlantic constructed as a
308 longitude offset from the near-coastal grid-cells shows a weekly
cycle in total precipitation which is confirmed by spectral analysis.
Fifth, harmonic analysis of the average value by day of the week for
each 2:58 3 2:58 grid-cell from 208 N to 608 N in the Atlantic reveals
a distinct phase shift. Maximum precipitation occurs near the
weekend for coastal grid-cells, and progresses to midweek for the
mid-Atlantic. Mid-Atlantic grid-cells have precipitation peaks
occurring on Tuesdays (396.7 mm yr−1; 14.9%) and precipitation
minima occurring on Saturdays (361.9 mm yr−1; 13.6%). This
pattern is consistent with eastward transport of pollution plumes8,11.

A second independent test involves tropical cyclone analysis.
Tropical cyclone data are derived from Atlantic observations (geo-
graphical positions, maximum wind strength, and minimum cen-
tral pressure at six-hour intervals; 1886 to 1996) collected by the
National Hurricane Center22. All observations are categorized by
day of the week. Because of more limited hurricane data before
1946, only data from 1946 to 1996 are used.

An overestimation bias in reported winds exists between 1944
and 196923. Observations for that period are stronger by 4.9 m s−1

than observations between 1970 and 1996. Although the segregation
by day mitigates the overestimation, two separate analyses were
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conducted to fully compensate for this bias. The first analysis used
the entire database (‘long’) while the second used only the unbiased
(1970–96) observations (‘short’). The total database showed no
significant differences by day of the week in observation frequency,
maximum surface wind speeds, or minimum central pressure. All
tropical cyclone data sets met normality criteria.

Two regions are defined; ‘coastal’ incorporates all tropical cyclone
observations north of 258 N, west of 708 W but east of 828 W (Fig. 1)
and ‘non-coastal’ includes all tropical cyclone observations outside
the ‘coastal’ parameters. As with the total data set, the ‘non-coastal’
data set shows no significant variation in strength or frequency by
day of the week. For the ‘non-coastal’ data set, neither minimum
central pressure nor maximum surface wind show weekly varia-
bility. Additionally, no differences exist in observation frequency by
day of the week for the ‘non-coastal’ data set.

Conversely, the ‘coastal’ tropical cyclone data set shows an explicit
weekly cycle (Fig. 2c). Both ‘long’ and ‘short’ ‘coastal’ weekend
observations significantly vary from mid-week observations. For
the ‘long’ data set, maximum surface winds average 5.0 m s−1 slower
for observations made on Saturdays than those for Fridays (Fig. 2c).
The unbiased ‘short’ data set has Saturday wind observations
averaging 3.6 m s−1 slower than those on Friday; these differences
are highly significant.

Significant differences are also apparent in minimum central
pressures (not shown). The ‘short’ data set’s Saturday observations
average 6.3 hPa higher in central minimum pressure than for
Thursday. Because of the discontinuous nature of the tropical
cyclone data, spectral analysis is not applicable. However, when
the maximum wind data are categorized into 396 separate weekly
periods, a 7-day sine wave (first harmonic) explains an average 55%
of the variance in each weekly period.

Because our goal is to emphasize the long-term existence, not direct
comparison, of weekly cycles in three independent variables, caution is
urged in applying day-to-day correspondences between the three
weekly cycles. However, proving the existence of equivalent cycles is
a time-honoured scientific methodology; for example, research link-
ing cycles in palaeoclimate reconstructions with equivalent astro-
nomical cycles24. Cycle identification is particularly important if a
physical rationale can be advanced to explain cyclic similarities.

Theories proposed in hurricane modification studies25 and urban
climate modification studies3,26–28 may explain the similar cycles in
climate and pollution. Heavy aerosol loading can produce thermal
responses in storm intensity and precipitation development2,25,29,30

such that modification of the boundary layer’s thermal structure
leads to increased turbulence and enhanced precipitation29,30, and
that solar radiation absorption by massive aerosol loading around a
hurricane cloud cluster stimulates cumulus convection25. We pro-
pose that extensive regional pollution advection into the Atlantic
produces climate modification by these mechanisms. As our find-
ings are statistical in nature, we can not confirm such a cause-and-
effect hypothesis, but we propose this hypothesis to stimulate
research on potential causative mechanisms operating between
pollution and regional climate. M
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Glacial to interglacial climate changes have been related to
organic carbon cycling in oceanic surface waters1, and this
possible link has led to the development of sedimentary tracers
of past marine biological production. For example, sediment
records of organic carbon2, opal3 and biogenic barium4 have
been used to reconstruct past variations in production in different
oceanic regimes, but these tracers cannot be used to discriminate
between the relative contributions of different phytoplankton
groups. Such a discrimination would provide greater insight into
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