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1. Introduction

One of the most interesting attributes of string theory is a natural interplay between open

and closed string degrees of freedom. For those interested in understanding confining

gauge theories or quantum gravity, this duality often translates into a technically useful

relation between Yang-Mills theories and gravitational dynamics [1, 2, 3]. More formally,

the duality involves an intriguing case of a hierarchy between solitonic and perturbative

degrees of freedom in a given theory, as different variables describing the same physics.

In the program of formulating open/closed string duality in progressively more trans-

parent frameworks, an important task involves understanding the coupling of Ramond-

Ramond (RR) fluxes — cast about by D-branes — to the closed string worldsheet degrees

of freedom [4]–[13]. In this work, our goal is to show that, in the presence of RR fluxes,

one may find the spinor degrees of freedom of the worldsheet acquire non-zero vevs. In

effect, these fluxes can polarize the worldsheet vacuum into non-trivial supersymmetric

configurations correlating with the orientation of nearby D-branes.
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While rather novel in string theory, the shifting and veving of spinors in the back-

ground of solitons is not a surprising phenomenon (see for example [14]). What makes this

case particularly interesting is the fact that it is associated with a degeneracy landscape

that can potentially yield to interesting worldsheet ‘solitons’ that source higher order RR

moments. This would then necessarily entail an interesting dynamical parameterization of

string theory degrees of freedom — one involving both perturbative and non-perturbative

variables.

In this note, we focus on the light-cone Green-Schwarz formalism of IIB closed string

theory. We start by developing the relevant symmetry transformations on the worldsheet,

from superspace to component form. In particular, we observe that, in the presence of

background fields, the supersymmetry transformation involves a piece that Lorentz rotates

the spinors on the worldsheet so as to preserve the supergravity gauge conditions of the

background. We are then left with three transformation rules to consider: a spinor trans-

lation, a Lorentz rotation, and kappa symmetry. To preserve the worldsheet light-cone

gauge, we need to combine these three symmetry transformations in a careful recipe. Do-

ing so leaves one with a set of interesting first order (BPS-like) differential equations in the

worldsheet fields that prescribe conditions to be satisfied so that the worldsheet vacuum

does not break all the supersymmetries of the background. These equations are found to

have an interesting structure: when RR fluxes are turned on, there is room for supersym-

metric vacua with non-trivial vevs for the spinors. We analyze an explicit example and

indeed find the non-zero vevs that polarize the worldsheet. We also find flat directions that

correlate with the orientation of the D-branes sourcing the fluxes. And we note that this

phenomenon is not manifested with NSNS fluxes.

In section 2, we present the superspace formalism that is our natural starting point.

In section 3, we describe the simplifications resulting from fixing the light-cone gauge.

In particular, we impose a series of conditions on the background fields so as to make

the problem tractable. Section 4 lays out the relevant symmetry transformations of the

worldsheet in component form. Section 5 combines these transformations and formulates

the supersymmetry transformation that preserves the light-cone gauge. Section 6 presents

the BPS condition in convenient notation. And section 7 analyzes a particular example

that involves worldsheet polarization by an RR flux.

2. Worldsheet superspace formalism

We start from the action for the IIB closed string in superspace [15]

I =

∫

dτdσ
√
−hhIJωV a

I V
b
J ηab +

1

2
εIJV B

I V
A
J BAB , (2.1)

where

V A
I ≡ ∂Iz

MEA
M ; (2.2)

and BAB is a tensor superfield whose θ0 component is the Neveu-Schwarz B-field of the

IIB theory. The supervielbein is denoted by EA
M , where A is a supertangent-space index

and M is a superspacetime index. In particular, A runs over 10 bosonic polarizations that
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we denote by a, b, . . . = 0 . . . 9; 16 fermionic polarizations of the Weyl spinor zα ≡ θα;

and another 16 polarizations from the complex conjugate z ᾱ ≡ θᾱ ≡ θ̄α. Hence, in this

notation, the two Majorana-Weyl spinors of the IIB theory are combined into one complex

Weyl spinor θ. And the degrees of freedom on the worldsheet are xa(τ, σ) and θ(τ, σ).

More about the conventions we use may be found in appendix A.

In the light-cone gauge, the component form of (2.1) truncates to quartic order in θ for a

large class of background field configurations. This form of the action, including the quartic

terms, was derived in [9] using the normal coordinate expansion technique in superspace.

In this paper, we focus on the component form of the supersymmetry transformation so

as to formulate more tractable first order differential equations for worldsheet vacua in the

presence of background fluxes.

We will write the various symmetry transformations in superspace notation by pre-

scribing a variation

δEA ≡ δzMEA
M . (2.3)

The method of normal coordinate expansion in superspace may be used once again to write

the component form of this expression. We will do so in section 4.1 for future reference;

yet, this detailed form will not be needed in this work.

We consider three different transformations of the worldsheet degrees of freedom: first,

a translation of the spinors by a supervector εA — the backbone of the supersymmetry

transformation

δεE
A = εA . (2.4)

We write εA explicitly in section 4.2. Second, a supersymmetry transformation in arbitrary

background fields also needs a Lorentz rotation

δLE
A = EBL̂AB . (2.5)

We will derive the form of L̂AB in section 4.2 as well. Together, δε + δL shall define our

supersymmetry transformation. Finally, the kappa symmetry is prescribed by a supervec-

tor κA

δκE
A = κA (2.6)

which we will fix in section 4.3.

3. Light-cone gauge choice and truncation

A great deal of simplification is achieved in the task of unraveling superspace into its

component form if one is to impose the light-cone gauge conditions

x+ = p+τ , σ+θ = 0 . (3.1)

Here we have defined

x± ≡ 1

2

(

x0 ± x1
)

, σ± ≡ 1

2

(

σ0 ± σ1
)

; (3.2)
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and the σa’s are 16× 16 gamma matrices
{

σa, σb
}

= 2ηab . (3.3)

For more details about the matrix representation we use, as well as helpful Fierz identities,

the reader is referred to appendix A and [16].

The gauge condition (3.1) is particularly well adapted for certain background fields

configurations. For such a suitable class of background fields, the worldsheet theory trun-

cates to quartic order in the θ’s; while the supersymmetry variation truncates to quadratic

order. Henceforth, we focus exclusively on such backgrounds, and these must obey the

following conditions [9]:

• All fields are independent of the x+ and x− coordinates.

• All fields carry ‘-’ and ‘+’ indices in pairs (or none at all); for example, a field strength

would have non-zero components F−+i or F ijk but never something like F−ij, where

i, j, k, . . . are space directions transverse to the light cone directions ‘+’ and ‘-’.

• The background vielbein is diagonal.

• All fermionic background fields have zero vevs. In particular, we have no condensates

of the gravitino and gaugino.

We note that such field configurations include most D-brane geometries if the light-cone

directions ‘+’ and ‘-’ are aligned parallel to the worldvolume of the D-branes.

4. SUSY, Lorentz rotations, and Kappa symmetry

In this section, we present the explicit forms of the three transformations (2.4), (2.5)

and (2.6). These appear in sections 4.2 and 4.3. The component form of equation (2.3) on

the left hand side of (2.4), (2.5) and (2.6) is presented in section 4.1.

4.1 Component form of variations

Equation (2.3) involves variations of all of the worldsheet fields

δEA = δzaEA
a + δzαEA

α − δzᾱEA
ᾱ . (4.1)

Hence, we need to unravel the components of the supervielbein. The method of normal

coordinate expansion in superspace is well-suited for this task. Appendix B reviews the

technique; the reader is also referred to [17, 18, 9].

First, let us assume that we have arranged for the light-cone gauge

σ+θ = 0 , x+ = p+τ . (4.2)

To maintain this gauge choice under a SUSY transformation, we need

σ+δθ = 0 , δxme+m = 0 . (4.3)
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These statements — along with the conditions on the background fields outlined in section 3

— severely restrict the structural form of (4.1). It is straightforward to show that we

necessarily have

δE+ = δxme+m . (4.4)

δE− = δxme−m −
i

2
θσ−δθ̄ − i

2
θ̄σ−δθ + δxmeamΘa . (4.5)

δEi = δxmeim . (4.6)

δEα = δθα + δxmeamΞαa . (4.7)

δEᾱ = δθᾱ + δxmeamΞᾱa . (4.8)

Indices i, j, k, . . . label the eight space directions transverse to the light-cone. In these

expressions, the important point is that Ξ is linear in θ, while Θ is quadratic. All higher

order terms cancel because of the light-cone condition and the form of the background

fields: The conditions on the background fields imply that one cannot absorb a light-cone

index ‘+’ or ‘-’ into a field strength; the ‘+’s and ‘-’s should eventually contract with

fermion bilinears. But the light-cone gauge and Fermi statistics for the spinors allow only

the following non-zero bilinears

θσ−ijθ , θ̄σ−ij θ̄ , θσ−θ̄ , θσ−ij θ̄ . (4.9)

It is now easy to see how one arrives at the structural form depicted in the equations (4.4)–

(4.8). More explicitely, using the normal coordinate expansion technique outlined in ap-

pendix B, one finds

δEa = δxm eam −
i

2
θσaδθ̄ − i

2
θ̄σaδθ −

− 1

384
Gfbcde δx

m efm θ̄σaσbcdeθ − 1

384
Gfbcde δxm efm θ̄σbcdeσaθ +

+
3 i

32
Fdbc δxm edm θ̄σbcσaθ̄ +

3 i

32
δxm edm θσbcσaθ F̄dbc +

+
i

96
Fbcd δxm eem θ̄σebcdσaθ̄ +

i

96
δxm eem θσebcdσaθ F̄bcd ; (4.10)

δEα = δθα − i

192
Gabcde δx

m
(

θσbcde
)α

eam +
3

16
Fabc δxm

(

θ̄σbc
)α

eam +

+
1

48
Fbcd δx

m
(

θ̄σabcd
)α
eam − δxm θβ ebm Ωb,βα ; (4.11)

δEᾱ = δEα . (4.12)

In these expressions, the indices a, b, c, . . . run over all ten spacetime directions. And

we are using the standard notation for the antisymmetrized gamma matrix basis; i.e.

σab... ≡ σ[aσb...]. Let us also identify the various IIB bosonic fields appearing in (4.10)–

(4.12):

• Fabc includes the NSNS and RR 3-form fluxes; writing Fabc = FR
abc + iF I

abc, we have

FR
abc =

1

2
e−φ/2H

(1)
abc , F I

abc =
1

2
eφ/2

(

χH
(1)
abc +H

(2)
abc

)

. (4.13)
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where H(1) and H(2) are respectively the NSNS and RR fields, φ is the dilaton, and

χ is the RR axion.

• Gabcde is the RR 5-form field strength.

• And Ωa,αβ is the spacetime connection.

The details in (4.10)–(4.12) will not be important to the upcoming analysis.

4.2 Supersymmetry transformation

As mentioned earlier, the supersymmetry transformation involves both (2.4) and (2.5). In

general, we have

δε+LE
A
M = ∂Mε

A + εC Ω̂ A
MC + εB T̂ A

BM +EB
M L̂

A
B . (4.14)

where T̂ A
BM is the supertorsion, and Ω̂ A

MC is the superconnection. The various components

of the supertorsion and superconnection have been computed in [16]. We note that, using

the conventions of [16], the superconnection includes a U(1) piece under which the θ’s are

charged. Similarly, the rotation matrix L̂AB includes a phase rotations under this U(1). We

use these ‘hat’-ed expressions for connection and rotation to make it easier to compare to

existing conventions in the literature. We will however undo this unnecessary U(1) rotation

at the end.

We now want to compute εA and L̂AB in background field configurations conforming

to our conditions of section 3. First, εA should be such that the θ0 component of the

supervielbein is preserved (i.e. so as to remain within the supergravity gauge1); this means

we need

δε+LE
A
M

∣

∣

0
= 0 . (4.15)

Using (4.14), we get a transformation with respect to a spinor translation parameter εα

and a U(1) phase rotation q

δεE
α = εα − iq θα . (4.16)

δεE
ᾱ = εᾱ + iq θᾱ . (4.17)

δεE
a = εa = iε̄σaθ + iεσaθ̄ . (4.18)

We note in particular the trivial contributions from the Lorentz rotation

L̂ba

∣

∣

∣

0
= 0 , L̂βα

∣

∣

∣

0
= iδβαq , L̂

β̄
ᾱ

∣

∣

∣

0
= iδ

β̄
ᾱq . (4.19)

We now rotate away the phase q for convenience to conform to more conventional world-

sheet supersymmetry transformation rules since this phase is not needed to preserve the

supergravity gauge. Hence, we set q → 0 in (4.16) and (4.17).

1The generic supergravity gauge condition fixes the θ0 components of the supervielbein EA
M and those

of the first derivative of the supervielbein or superconnection ΩA
BC (see for example [10]).
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In general background fields, the transformation δε also upsets the superconnection.

To preserve the θ0 components of the superconnection (see footnote 2), one needs to add

a Lorentz rotation [10]

δε+LΩ̂
B

MA

∣

∣

∣

0
= 0 . (4.20)

And we know

δε+LΩ̂
B

MA = −∂M L̂BA + εN R̂ B
NMA , (4.21)

where R̂ B
NMA is the superriemann tensor (with a U(1) piece which will not contribute).

It is now easy to find the component form of L̂ B
A . We first write

Lβα =
1

4

(

σab
)β

α
Lab = L̄βα . (4.22)

L̂ab = Lab , L̂βα = Lβα + iqδβα , L̂
β̄
ᾱ = −Lβα + iqδβα . (4.23)

From (4.20), one then gets

Lab = θαεβRβαab − θαεβ̄Rβ̄αab − θᾱεβRβᾱab + θᾱεβ̄Rβ̄ᾱab . (4.24)

where the relevant components of the superRiemann tensor may be found in [16]. In terms

of the more familiar fields, this is

Lab = −
3

4
iεσcθ F̄abc −

i

24
εσabcdeθ F̄

cde +
1

24
θσcdeε̄ Gabcde + c.c. . (4.25)

As a check, we take the flat space zero flux limit

δεθ = ε , δεθ̄ = ε̄ , δxa =
i

2
ε̄σaθ +

i

2
εσaθ̄ . (4.26)

δLθ = 0 , δLθ̄ = 0 , δLx
a = 0 . (4.27)

to arrive at more familiar looking expressions. Note in particular that, for backgrounds

without RR and NSNS fluxes, the Lorentz rotation piece is zero.

4.3 Kappa symmetry

The kappa symmetry (2.6) of (2.1) is assured if we choose [15]

κa = 0 ; (4.28)

κα = V a
I (σa)

αβ

(

hIJηJβ −
εIJ√
−h

η̄Jβ

)

≡ V a
I (σa)

αβ kIβ . (4.29)

κ̄α = κᾱ = κα . (4.30)

Note that the two spinors ηi — with i = 0, 1 — have opposite chirality to that of θ. It is

more convenient to rewrite this tranformation using

k0 = η0 − η̄1 , k1 = −η1 + η̄0 ⇒ k̄0 = k1 . (4.31)

Hence,

καL,R ≡ κα ± κ̄α = ∂±z
MEa

M (σakL,R)
α , (4.32)

with kL,R ≡ k0± k̄0 and ∂± ≡ ∂0± ∂1. We will need the kappa transformation in section 5

to devise a supersymmetry transformation that preserves the light-cone gauge σ+θ = 0.
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5. Preserving the light-cone gauge

In this section, we will formulate the supersymmetry transformations that preserve the

light-cone gauge (3.1). For fixed εα (and hence fixed δL), we want to choose δκ such that

σ+ (δκ+ε+Lθ) = 0 . (5.1)

First, from (4.4) and (4.18), we know that

δε+LE
+ = δxme+m = 0 . (5.2)

We next note that Lorentz rotation δL would always preserve the light-cone gauge, provided

that δε+κ is arranged to do so

σ+δε+κθ = 0 . (5.3)

To see this, apply σ+ to

δLθ
α = θβLαβ (5.4)

it is straightforward to check using (4.22) and (4.25) that we indeed have (see appendix C

for details)

σ+δLθ = 0 . (5.5)

Hence, we focus on δε+κ. From equation (4.7) and (4.16), it is easy to see that2

σ+δεθ = 0⇒ σ+ε = 0 . (5.6)

Therefore, if we look at ε translations satisfying σ+ε = 0, we need not use kappa transfor-

mations to preserve the light-cone gauge. These sixteen supersymmetries (ε is complex)

would then transform the worldsheet as in

δSE
i = δLE

i , δSE
α = εα + δLE

α , δSE
ᾱ = δSEα , (5.7)

where δS stands for a supersymmetry transformation preserving the light-cone gauge. But

if σ+ε = 0, we also have3

δLE
i = δLE

α = δLE
ᾱ = 0 . (5.8)

Equation (5.7) then entails no interesting structure that may be left unbroken by a non-

trivial worldsheet vacuum. A BPS condition δSE
A = 0 implies ε = 0.

Next, we focus on

σ+ε 6= 0 (5.9)

with σ−ε = 0 (or ε = σ−σ+ε). The transformation δε then takes us out of the light-cone

gauge. We need to use an appropriately tuned kappa transformation to bring us back.

Choose

σ+kL,R = 0 . (5.10)

2One needs a ‘-’ index in (4.11); but we have (5.2).
3See (2.5), (4.22) and (4.25), making use of σ+ε = σ+θ = 0.
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So that we have

σ+εL,R + σ+κL,R = 0 , (5.11)

with

δκ+εE
α ± δκ+εE

ᾱ = εαL,R + καL,R . (5.12)

We then can write

καL,R = ∂±x
mEa

m (σakL,R)
α = −∂±xmeim

(

σikL,R
)α

+ 2p+e+
(

σ−kL,R
)α
. (5.13)

where we used x+ = p+τ , and e+ stands for the vielbein component in the ‘+’ direction

for our diagonal metric. It is now straightforward to solve (5.11) for kL,R in terms of εL,R

2p+e+
(

σ+σ−kL,R
)

= −σ+εL,R . (5.14)

Putting things together — while focusing on the piece surviving the action of σ− (i.e.

insert 1 = σ+σ− + σ−σ+ in (5.12)) — we get

δκ+εE
α ± δκ+εE

ᾱ =
1

2p+
∂±x

m e
i
m

e+

(

σiσ+εL,R
)α

; (5.15)

δκ+εE
− = iε̄σ−θ + iεσ−θ̄ = 0 ; (5.16)

δκ+εE
+ = 0 ; (5.17)

δκ+εE
i = iε̄σiθ + iεσiθ̄ . (5.18)

And more interestingly, including the Lorentz rotation, we find that the supersymmetry

transformation of the worldsheet degrees of freedom in backgrounds with RR and NSNS

fluxes takes the form

δSE
α ± δSE

ᾱ =
1

2p+
∂±x

m e
i
m

e+

(

σiσ+εL,R
)α

+ θβLαβ ∓ θβ̄Lᾱβ̄ . (5.19)

δSE
− = − i

2

(

θ̄σ−
)

α
θβLαβ +

i

2

(

θσ−
)

ᾱ
θβ̄Lᾱβ̄ . (5.20)

δSE
+ = 0 . (5.21)

δSE
i = iε̄σiθ + iεσiθ̄ . (5.22)

Hence, these are the remaining sixteen (again ε is complex) supersymmetry transforma-

tions. We are now ready to look for interesting supersymmetric worldsheet vacua.

6. Non-trivial supersymmetric vacua

Equations (5.19)–(5.22) may be used to look for solutions of the worldsheet fields that are

invariant under supersymmetry transformations

δSE
A = 0 . (6.1)

We also need to make sure that the same supersymmetries that are left unbroken by this

statement are also left unbroken by the background field configuration. To clarify the

– 9 –
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structural forms of these equations, we rewrite the complex spinor θ in terms of two real

chiral spinors

θ = θ1 + iθ2 , θ̄ = θ1 − iθ2 . (6.2)

Similarly, we would write εL = 2ε1, εR = 2iε2. Equation (5.22) then becomes

ε1σ
iθ1 + ε2σ

iθ2 = 0 . (6.3)

While equation (5.20) is
(

θ1σ
−abθ1 + θ2σ

−abθ2

)

Lab = 0 . (6.4)

And finally equation (5.19) is

∂±x
m

p+
eim
e+

(

σiσ+ε1,2
)

− 1

2
Lab

(

σabθ1,2

)

= 0 . (6.5)

With

σ+ε1,2 6= 0 , σ+θ1,2 = 0 , (6.6)

and

Lab = −3

2
F I
abc (ε1σ

cθ1 − ε2σ
cθ2)−

1

12
F I cde (ε1σabcdeθ1 − ε2σabcdeθ2) +

+
3

2
FR
abc (ε2σ

cθ1 + ε1σ
cθ2) +

1

12
FRcde (ε2σabcdeθ1 + ε1σabcdeθ2) +

+
1

12
Gabcde

(

ε1σ
cdeθ1 + ε2σ

cdeθ2

)

, (6.7)

equations (6.3), (6.4) and (6.5) are our BPS conditions. We note that F R
abc is roughly NSNS

flux; and F I
abc contains RR flux.4

7. A supersymmetric solution

Let us start by focusing on equation (6.3). We may satisfy this statement if we arrange

ε1 = ±ε2 , θ1 = ∓θ2 . (7.1)

From (6.7), we see that this case corresponds to a Lorentz rotation involving RR fluxes

(both χ and H(2)) and no NSNS fluxes. In contrast, the alternative statement

ε1 = ±ε2 , θ1 = ±θ2 (7.2)

leads to no RR couplings in (6.7); and condition (6.3) needs to be imposed separately. The

latter is a stringent statement that would imply θ1,2 = 0.5 Hence, the interesting case is

given by (7.1), when RR fluxes are present. We then consider this scenario, and analyze

the remaining equations (6.4) and (6.5).

4As a quick check of the conditions we are exploring, we note that the flat space zero flux limit corresponds

to the requirement ∂±x
a = 0; i.e. as expected, exclusively left or right moving excitations on the string are

BPS with sixteen supersymmetries.
5One may not set ε1 equal to θ1 since σ+ε1 6= 0.
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First, note that for RR fluxes, we have L−i = L+i = 0, Lij 6= 0, L+− 6= 0. Our goal is

to show that it is now possible to have a non-trivial vev for the spinors θ1,2. To simplify

matters, let us consider an electric field strength F I−+i 6= 0, F I ijk = 0. Perhaps our closed

string is in the vicinity of D1 strings. We then have

Lelij = 2F I −+kε1σ
+σijkσ

−θ1 ; (7.3)

Lel−+ = −12F I −+iε1σ
+σiσ

−θ1 . (7.4)

We look for the simplest configuration for the bosonic fields6

∂τx
m = 0 , ∂σx

m = 0 , (7.5)

where the index m in this equation is taken transverse to the light-cone. From (6.4), one

gets
(

θ1σ
−ijθ1

) (

ε1σ
+σijkσ

−θ1
)

F I −+k = 0 . (7.6)

And from (6.5), one has

F I−+k
(

ε1σ
+σijkσ

−θ1
) (

σ−σijθ1
)

+ 6F I −+k
(

ε1σ
+σkσ

−θ1
) (

σ−θ1
)

= 0 . (7.7)

We now need to solve (7.6) and (7.7) for θ1 for fixed non-zero ε1. The problem may be recast

into a system of linear equations for a number of bosonic variable ni and mijk = m[ijk] by

writing the most general expression7

ε1 = nkσ
kσ−θ1 +mklmσ

klmσ−θ1 . (7.8)

The implication is that we shall invert this equation at the end for θ1. Substitute (7.8)

in (7.6) and (7.7) and use Fierz identities to rearrange things (see appendix A). To write

the result in a suggestive form, let us define the objects

Aij ≡ θ1σ
−ijθ1 , A

ij
0 ≡ σ−ijθ1 , A0 ≡ σ−θ1 . (7.9)

Equation (7.6) then becomes

AijGij,klAkl = 0 . (7.10)

where the ‘metric’ is written as

Gij,kl = −ηikηjlF I−+mnm+ ηjlF
I −+

kni+ ηjlF
I −+

ink− 3F I −+
kmijl− 3F I −+

imklj . (7.11)

Notice that Gij,kl = Gkl,ij; and that we may antisymmetrize [ij] and [kl] if desired. Equa-

tion (7.7) involves slightly more work. One gets an expression looking like

AijG′ij,klAkl
0 +H′ijAijA0 = 0 (7.12)

6In the case where one may wrap the closed string along a compact cycle of the geometry, it was shown

in [8] that it may be possible to cancel (semiclassically) the effect of RR fluxes in certain situations. Here,

we consider a more generic scenario.
7Note that we are looking for a constant vacuum vev for the spinors θ.
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where G′ includes G (the part symmetric in the indices (ij, kl)), as well as additional pieces

in the antisymmetric combination of the indices. While there is no obvious symmetric

structure in the product AijAkl
0 in exchanging (ij) with (kl), it is possible to unravel the

antisymmetric part and combine it with what we have labeled H′ij. To do this, one uses

Fierz rearrangements, such as

(θσ−ijθ)(σ−klθ)=− 1

162
(θσ−mnθ)

[

Tr(σijσmnσ
kl)(σ−θ) +

1

2
Tr(σijσmnσ

klσpq)(σ
−pqθ)

]

.

(7.13)

One then can rewrite

AijG′ij,klAkl
0 = AijGij,klAkl

0 +AijAkl,mn
ij G′Akl,mnA0 , (7.14)

where Akl,mn
ij may be computed from the traces of gamma matrices, and G ′Akl,mn stands for

the part of G ′ antisymmetric under exchange of (kl) with (mn). When the dust settles,

one gets equation (7.7) recast into the form

AijGij,klAkl
0 +HijA

ijA0 = 0 (7.15)

where Gij,kl is as in (7.11); and

Hij =
51

2
F I −+kmkij +

9

2
F I −+

[inj] . (7.16)

To solve for ni and mijk in (7.10) and (7.15), one may use a Clifford algebra basis such

that

A23 = A45 = A67 = A89 = 0 (7.17)

since the spinors obey Fermi statistics and σ− is a symmetric matrix. One then needs

Gij,kl = 0 if (ij) or (kl) 6= {23, 45, 67, 89} . (7.18)

And

HijA
ij = 0⇒Hij = 0 if (ij) 6= {23, 45, 67, 89} . (7.19)

Let us now specialize to a simple background field configuration to be more explicit.

Arrange a network of parallel D1 branes stretched along the 1 direction, filling all of the

space directions i = 2 . . . 8; we would then have a constant flux pointing in the 9 direction

F I −+9 = constant , All other components zero . (7.20)

Notice also that this background leaves unbroken the supersymmetries given by (7.1).

Equations (7.18) and (7.19) are then satisfied if

ni = 0 and mijk = 0 except if (ijk) = {923, 945, 967} . (7.21)

The remaining three mijk’s are otherwise arbitrary. We now also see that we may in-

vert (7.8) to solve for a non-trivial vev for θ1 for any of the eight supersymmetries ε1. We

have hence shown that the vacuum of the worldsheet can get polarized in the presence of

RR fluxes in directions correlating with the orientation of the D1 branes. Note also that we

have three free bosonic degrees of freedom, one for each of the planes (23), (45) and (67).
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8. Discussion

We have shown that the presence of background RR fluxes can polarizes worldsheet spinor

degrees of freedom. We contrasted this with the case involving NSNS fluxes where no

polarization occurs. We expect this phenomenon to be a general one. Furthermore, with

non-trivial vacuum degeneracy, we can speculate that the worldsheet theory may admit

worldsheet ‘soliton’ configurations — with interesting spinor profiles — that can source RR

moments (we would still expect zero RR monopole moment). In particular, if one turns on

a profile for the bosonic excitations xm(τ, σ), one may locally lift some of the flat directions

of our solution of the previous section towards zero vev (see equation (6.5)). It would then

be interesting to see if it is possible to lock the spinors in one polarization state, say 923, in

some limiting regime on the worldsheet; and then lock them in another state, say 945, in

another limiting regime. Such configurations would source RR flux, yet they would be built

from closed string degrees of freedom. It would be hoped that the identification of such

configurations can shed light on the interplay between open and closed string dynamics.

Beyond looking for such worldsheet solitons, other interesting directions involve an

analysis of the structure of the degeneracy in the scenario we presented. In particular,

using [9], we may look at the dynamics of small fluctuations about spinor vevs. It would

also be interesting to consider other toy systems that can help one develop intuition about

the problem. In particular, an interesting scenario is one involving a profile of the RR

axion (D(-1) brane charge), along with NSNS 3-form flux. As we see from (4.13), such

a configuration may yield vevs for the spinors as well. The instantonic nature of the

source of the RR field in such a scenario may help clarify the issue of encoding of D-brane

worldvolume directions onto a soliton in 1+1 dimensions. We hope to report on some of

these issues in the future.

A. Spinor conventions

In this work, we are using the Clifford algebra convention used in [16, 15, 9]. The 16× 16

gamma matrices satisfy
{

σa, σb
}

= 2ηab , (A.1)

where ηab is the flat metric with signature +−−− · · ·. We then have σ+σ− + σ−σ+ = 1.

The σa’s are real σa = σa; σa, σabcd, and σabcde are symmetric; while σab and σabc are

antisymmetric. We also note the useful rearrangement

Qαβ =
1

16

(

Tr [Qσa] σ
a
αβ −

1

3!
Tr [Qσabc] σ

abc
αβ +

1

5!
Tr [Qσabcde] σ

abcde
αβ

)

. (A.2)

And σabcde is self-dual.

B. Normal coordinate expansion in superspace

The normal coordinate expansion technique in superspace allows one to unravel the com-

ponent form of superspace expressions. In this work, we used it to write the explicit form
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of the variation δEA. Using [17] and [18], one writes

E′
A
= EA + δEA +

1

2!
δ2EA + · · · . (B.1)

Each variation, evaluated at zeroth order, may be computed using the relations

δEA = DyA + yCEV T A
BC ; (B.2)

δDyA = −yBECyDR A
DCB . (B.3)

Here, yA is the displacement in normal coordinates from the point zM = 0 forM fermionic.

The supertorsion and superriemann tensors may be found in [16] in the same notation used

in this work.

C. A sample computation involving a SUSY rotation

In this appendix, we derive equation (5.5) as a sample of the type of considerations involved

in computing the form of the BPS condition. We want to show

σ+δLθ = 0⇒ Lab σ
+σabθ = 0 , (C.1)

where Lab is given by (4.25). The basic argument then goes as follows: One of the two

indices a or b needs to be in the raised ‘-’ light-cone direction so that the expression is

non-zero; otherwise σ+ would kill θ. The other has then to be transverse to the light-cone

(since σ+σ− + σ−σ+ = 1). We then look at (4.25) with a or b being a raised ‘+’. We now

remember that the background fields F (3) and G(5) appearing in Lab have to satisfy the

conditions outlined in section 3. We can immediately see that we have

L+
i = 0 . (C.2)

Hence, we prove (5.5). We note in particular that we make use of the conditions imposed

on the background fields in section 3, as well as the light-cone condition on the spinors.
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