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1. Introduction and results

In many realizations of the holographic duality [1, 2, 3], where a perturbative string theory

is found dual to strongly coupled dynamics in a field theory or in another string theory,

the closed strings on the weakly coupled side of the duality are immersed in background

Ramond-Ramond (RR) fluxes. Knowledge of the couplings of the string worldsheet degrees

of freedom to such fluxes is then an important ingredient to the task of exploring the

underpinnings of the duality.

There are three main approaches in writing down an action of closed superstrings

in an arbitrary background. In the RNS formalism, powerful computational techniques

are available, yet the vertex operators sourced by RR fields involve spin fields. A second

approach is the Green-Schwarz (GS) formalism with spacetime supersymmetry, generally

leading to an action that is particularly useful in unraveling the semi-classical dynamics

of the sigma model. On the down side, manifest Lorentz symmetry is lost with the fixing

of the light-cone gauge; and, at one loop level for example, the lost symmetry results in

serious complications. The third approach was developed recently [9] and involves a hybrid
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picture. In this strategy, part of the spacetime symmetries remain manifest yet couplings to

the RR fields take relatively simple forms. The cost is the introduction of several auxiliary

fields, and certain assumptions on the form of the background.

In this work, we focus on the second GS formalism with spacetime supersymmetry

and on determining the component form of this action. Our interest is to eventually study,

semi-classically, closed string dynamics in general backgrounds that arise readily in the

study of D-branes. Other recent approaches involve specializing to backgrounds with a

large amount of symmetry in writing the corresponding worldsheet theory; for example,

AdS spaces have been of particular interest (e.g. [10]–[13]). We would then like to extend

the scope of this program by considering generic D-brane configurations with much less

symmetry.

Most of the difficulties involved in writing down the string action in general form are

due to the fact that superspace for supergravity, while still being a natural setting for the

theory, can be considerably complicated [14]: a large amount of superfluous symmetries

need to be fixed and computations are often prohibitively lengthy.

The task is significantly simplified by the use of the method of normal coordinate

expansion [15, 16] in superspace. This was developed for the Heterotic string in [17], and,

along with the use of computers for analytical manipulations, makes determining the type-

IIA and IIB sigma models straightforward as well. The additional complications that arise

in these cases — and that are absent in the Heterotic string case — are due entirely to the

presence of the RR fields.

In this paper, we concentrate on the IIB theory. In [18], part of this action, to quadratic

order in the spinors, was derived starting from the supermembrane action and using T-

duality.1 In this work, starting from IIB superspace directly and using the method of

normal coordinate expansion, we compute the full form of the IIB worldsheet action in the

light-cone gauge relevant to most backgrounds of interest. In the subsequent subsection,

we present all the results of this work in a self-contained format. The details of deriving

the action are then left for the rest of the paper and need not be consulted.

1.1 The results

The class of background fields we focus on is inspired by [17] and by the need to apply

our results to settings that arise in the context of the holographic duality. In particular,

fields generated by electric and magnetic D-branes of various configurations share certain

general features of interest. We list all the conditions we impose on the background fields

so that our form of the IIB action is valid:

• The supergravity fermions are to vanish. In particular, the gaugino and gravitino

have no condensates.

• We choose a certain space direction that, along with the time coordinate, we will

associate with the light-cone gauge fixing later. We refer to the other eight spatial

directions as being transverse. With this convention, we demand that all background

fields depend only on the transverse coordinates.

1See also [19] for a derivation of the action to quadratic order using T-duality.
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• Tensor fields can have indices in the transverse directions; and in the two light-

cone directions only if the light-cone coordinates appear in pairs; e.g. a 3-form field

strength Fpqr can have nonzero components Fabc or F−+a where a, b, and c are

transverse directions; and + and − are light-cone directions. But components such

as F−ab are zero.

For example, if we were to consider a background consisting of a number of static Dp

branes, we choose the light-cone directions parallel to the worldvolume of the branes. All

conditions listed above are then satisfied.

Under these assumptions, and once the κ symmetry is fixed, the IIB action takes the

form

S = S(0) + S(2) + S(4) , (1.1)

where the superscripts denote the number of spinors in each expression. Hence, the action

truncates to quartic order in the fermions.

The first term is the standard bosonic part2

S(0) =

∫

d2σ

[

1

2

√
−hhijV a

i Vaj + 2
√
−hhijV +

i V
−
j +

1

2
εijV a

i V
b
j b

(1)
ab + 2εijV +

i V
−
j b

(1)−+

]

.

(1.2)

In this expression, and throughout, the ′+′ and ′−′ flat tangent space labels refer to the

light-cone directions as in x± ≡ (x0±x1)/2, with x0 and x1 being respectively the time and

some chosen space direction defining the light-cone. We then denote eight flat transverse

tangent space indices by a, b, . . . All tensors are written with their indices in the tangent

space by using the vielbein; i.e. for the NSNS B-field, we have b
(1)
ab = ema e

n
b b

(1)
mn. We define

V a
i ≡ ∂ix

meam , V ±i ≡ ∂ix
me±m . (1.3)

Curved spacetime indices are then labeled by m,n, . . .. Note that we write the action in the

Einstein frame; in section 4.1 we cast part of the action into the string frame to compare

with the literature.

Note also that while we fix the kappa symmetry, we do not fix the light-cone gauge

in V +
i and hij so as to allow for different choices. One conventional choice in flat space is

hττ = +1, hσσ = −1, hτσ = 0, V +
σ = 0, and V +

τ = p+.

Next, we represent the two spacetime spinors by a single Weyl — but otherwise complex

— 16 component spinor θ. The 16 × 16 gamma matrices are denoted by σa and the

conventions for the spinor representation we have adopted are summarized in appendix A.

At quadratic order in θ, the action takes the form

S(2) =

∫

d2σ
(

Ikin + V + i V j
c Icij

)

+ c.c. , (1.4)

where ‘c.c’ stands for complex conjugate. And we define separately the kinetic piece and

2The signature of the metric we use is (+−−−−· · ·). See appendix A for the details.

– 3 –



J
H
E
P
0
4
(
2
0
0
4
)
0
2
6

the piece that involves no derivatives of the fermions

Ikin = −i ω
√
−hhijV +

i θ̄σ
−Djθ + i ω εijV +

i θσ−Djθ ; (1.5)

Icij = i
ω

2

√
−h hij P c θ̄σ−θ − i ω

2
εij Pa θ̄σ

−caθ̄ −

− iω
√
−hhij F−+aθ̄σ−caθ̄ + i

ω

4

√
−hhij F c

ab θ̄σ−abθ̄ +

+ iωεijF
−+cθ̄σ−θ − iωεijF−+aθ̄σ−caθ − i

ω

4
εijF

c
abθ̄σ

−abθ +

+
ω

4
εijG

−+c
abθσ

−abθ . (1.6)

The covariant derivative is defined as

Djθ ≡ ∂jθ
α − 1

4
∂jx

mωm,ab σ
abθ . (1.7)

The various background fields appearing in (1.6) are:

• The IIB dilaton

ω ≡ eφ/2 . (1.8)

• The field strengths for the IIB scalars

Pa ≡
eφ

2

(

iDaχ− e−φDaφ
)

; (1.9)

Qa ≡
P̄a − Pa

4 i
= −e

φ

4
Daχ , (1.10)

with χ being the IIB axion.

• The 3-form field strength

Fabc ≡
eφ/2

2
(1 + e−φ + iχ)Fabc +

eφ/2

2
(−1 + e−φ + iχ)F̄abc ; (1.11)

with

Fabc ≡
h
(1)
abc

2
+ i

h
(2)
abc

2
, (1.12)

where h(1) and h(2) are, respectively, the field strengths associated with fundamental

string and D-string charges.

• And the five-form self-dual field strength Gabcde.

At quartic order in the spinors, the action involves many more terms. We may organize

these in eight different parts:

S(4) =

∫

d2σ
√
−hhijV +

i V
+
j [IFF + IFG + IGG + IDF + IFP + IDG + IR + IPP ] + c.c.

(1.13)

according to field content. Amongst these, we encounter two qualitatively different types

of terms: ones involving the form θθ̄θθ̄; and ones involving the structure θθθθ̄ (or its
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complex conjugate). The fermions count a U(1) charge which is part of the symmetry of

the supergravity theory. We then get the expressions of the first type

IGG =
23ω

4608

(

θ̄ σ− θ
)2
G−+abc G−+abc +

+
ω

9216
θ̄ σ−ab θ θ̄ σ−ab θ G

−+cdeG−+
cde −

− ω

384
θ̄ σ− θ θ̄ σ−ab θ

[

1

12
G−+cdeGcdeab +G−+c adG

−+d
cb

]

+

+
ω

1536
θ̄ σ−ab θ θ̄ σ−cd θ

[

G−+eabG
−+

ecd −
1

24
Gabefg G

efg
cd

]

−

− ω

256
θ̄ σ−ac θ θ̄ σ−bc θ

[

G−+ adeG
−+de

b −
1

72
Gadefg G

defg
b

]

(1.14)

IFF =
13ω

24

(

θ̄ σ− θ
)2
F−+a F̄−+a +

25ω

768
θ̄ σ−ab θ θ̄ σ−ab θ F

−+c F̄−+c +

+
ω

256
θ̄ σ− θ θ̄ σ−ab θ

[

93F−+
a F̄
−+

b −
43

2
F−+c F̄cab −

17

24
Facd F̄

cd
b

]

−

− ω

96
θ̄ σ−ac θ θ̄ σ−b c θ

[

17F−+a F̄
−+

b +
5

8
F−+d F̄dab −

7

16
Fade F̄

de
b

]

+

+
ω

1536
θ̄ σ−ab θ θ̄ σ−cd θ

[

23F−+d F̄cab − 7F−+a F̄bcd −

− 1

2
Face F̄

e
bd −

13

4
Fabe F̄

e
cd

]

(1.15)

IDG =
i

192
ωDcG

−+c
ab θ̄ σ

− θ θ̄ σ−ab θ (1.16)

IPP =
15ω

256
θ̄ σ− θ θ̄ σ−ab θ Pa P̄b −

ω

48
θ̄ σ−ac θ θ̄ σ−b c θ Pa P̄b (1.17)

IR = −5ω

32

(

θ̄ σ− θ
)2
R−+−+ +

ω

192
θ̄ σ−ab θθ̄ σ−ab θ R

−+−+ −

− ω

96
θ̄ σ−ac θ θ̄ σ−bc θ

[

R−+ ab +
1

2
R d
adb

]

+

+
ω

384
θ̄ σ−ab θ θ̄ σ−cd θ

[

Racbd +
1

2
Rabcd

]

(1.18)

Rabcd being the Riemann tensor in the Einstein frame.

The expressions of the second type are

IFG = i
ω

48
θ σ−ab θ θ̄ σ− θ F̄−+eG−+abe +

+i
ω

32
θσ−abθθ̄σ−cdθ

[

1

3
F̄ebdG

−+e
ac−

1

3
F̄−+dG

−+
abc−

5

12
F̄ecdG

−+e
ab−

1

12
F̄efdG

ef
abc+

+
1

12
F̄eabG

−+e
cd − F̄−+bG−+acd +

1

3
F̄−+eG

e
abcd

]

+

+i
ω

48
θ σ−ac θ θ̄ σ−bc θ

[

F̄−+dG
−+d

ab +
1

4
F̄debG

−+de
a −

1

4
F̄deaG

−+de
b

]

+
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+i
ω

1152
θ σ−ab θ θ̄ σ−ab θ F̄cdeG

−+cde (1.19)

IFP =
ω

8
F−+a P̄b θ̄ σ

− θ θ σ−ab θ − ω

8
F−+a P̄b θ̄ σ

−ac θ θ σ−bcθ +

+
ω

96
Facd P̄b θ̄ σ

−cd θ θ σ−ab θ −

−i ω
6
θ σ−ac θ θ̄ σ−bc θQb F̄

−+
a − i

ω

24
θ σ−ab θ θ̄ σ−cd θQc F̄abd (1.20)

IDF =
ω

12
θ σ−ac θ θ̄ σ−bc θDb F̄

−+
a +

ω

48
θ σ−ab θ θ̄ σ−cd θDc F̄abd (1.21)

To make contact with the literature, we write the equations of motion satisfied by

the background fields in the conventions we have adopted. Labeling flat tangent space

indices that span all ten spacetime directions (including the light-cone) by â, b̂, ĉ, d̂, . . ., we

have [20]

DâPâ = −4 iQâPâ +
1

6
Fâb̂ĉF

âb̂ĉ ; (1.22)

DĉFâb̂ĉ = −2 iQĉFâb̂ĉ − F̄âb̂ĉP ĉ +
i

6
Gâb̂ĉd̂êF

ĉd̂ê ; (1.23)

DêGâb̂ĉd̂ê = − i

18
εâb̂ĉd̂êf̂ ĝĥîĵF

êf̂ ĝF̄ ĥîĵ (1.24)

Râb̂ = −2P̄(âPb̂) − F̄ ĉd̂
(â F ĉd̂

b̂)
+

1

12
ηâb̂F̄ĉd̂êF

ĉd̂ê − 1

96
G ĉd̂êf̂
â Gb̂ĉd̂êf̂ ; (1.25)

The five-form field strength Gâb̂ĉd̂ê is self-dual in this scheme. Our conventions conform, for

example, to those in [23] with the identifications χ+ i e−φ → λ, h(1) → H(1), h(2) → H(2).

In the rest of the paper, we describe how to arrive at the expressions presented. The

current section was organized such that the details of these derivations are not needed to

make use of the results. Section 2 summarizes the basic superspace formalism we use.

Section 3 outlines the strategy and techniques that simplify the computations. Section 4

presents yet more details; in particular, in section 4.1, we write the action in the string

frame to quadratic order in the spinors, compare with the literature, and confirm that our

results are consistent with other recent attempts at determining this action (see however

minor note in section 4.1 with regards to the U(1) charge). Section 5 includes concluding

remarks about future directions. And appendix A collects some of the conventions we use

throughout the paper.

Note added. The original version of this paper [27] presented the action to quartic or-

der but without the terms involving the spinor structure θθθθ̄. In that version, it was

erroneously argued — as pointed out by [28] — that these terms would vanish. In this

work, this argument has been corrected and the additional terms are now presented in

equations (1.19)–(1.21). Furthermore, the entire computation has been reworked and or-

ganized so as to make the calculation of all the terms sensitive to the same potential human

errors. Since we are now able to check against the literature for the terms quadratic in the

fermions, this organization of the computation provides an indirect check of the quartic

terms as well. The entire computational scheme has been coded on Mathematica 5.0.
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2. Preliminaries

2.1 IIB supergravity in superspace

The fields of IIB supergravity are

{

eâm, τ = e−φ + iχ, b(1)mn + i b(2)mn, bmnrs; ψm, λ
}

; (2.1)

these are respectively the vielbein, a complex scalar comprised of the dilaton and the axion,

two two-form gauge fields, a four-form real gauge field, a complex left-handed gravitino,

and a complex right-handed spinor. The gauge fields have the associated field strengths

defined as

h(1) = db(1) , h(2) = db(2) , g = db . (2.2)

An elaborate superspace formalism can be developed for this theory. It involves the

standard supergravity superfields [20]

(

EA
M ,Ω

B
MA

)

→
(

TABC , R
D
ABC

)

. (2.3)

In addition, one needs five other tensor superfields

{

PA, QA, F̂ABC ,GABCDE ,ΛA
}

. (2.4)

Throughout, we accord to the standard convention of denoting tangent space superspace

indices by capital letters from the beginning of the alphabet. In this setting of N = 2 chiral

supersymmetry, an index such as A represents a tangent space vector index â spanning all

ten dimensions, and two spinor indices α and ᾱ. Hence, superspace is parameterized by

coordinates

zA ∈
{

xâ, θα, θᾱ
}

. (2.5)

Here, θα and θᾱ ≡ θ̄α have same chirality and are related to each other by complex

conjugation. In this manner, unbarred and barred Greek letters from the beginning of the

alphabet will be used to denote spinor indices. More details about the conventions we

adopt can be found in appendix A.

The two superfields PA and QA are the field strengths of a matrix of scalar superfields

V =

(

u v

v u

)

, (2.6)

with

uu− vv = 1 . (2.7)

This matrix describes the group SU(1, 1) ∼ SL(2,R), which later gets identified with the

S-duality group of the IIB theory. The scalars parameterize the coset space SU(1, 1)/U(1),

with the additional U(1) being a space-time dependent symmetry with an associated gauge

field. We then define

V−1dV ≡
(

2iQ P

P −2iQ

)

, (2.8)

– 7 –
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with

Q = Q (2.9)

being the U(1) gauge field mentioned above. All fields in the theory carry accordingly

various charge assignments under this U(1). This is a powerful symmetry that can be used

to severely restrict the superspace formalism. We also introduce the superfield strength F̂

(

¯̂F , F̂
)

=
(

¯̂
F , F̂

)

V−1 , (2.10)

which transforms under the SU(1, 1) as a singlet.

All these fields are associated with a myriad of Bianchi identities. As is typical in

supergravity theories, there is an immense amount of superfluous symmetries in the su-

perspace formalism. Some of these can be fixed conventionally; and using the Bianchi

identities, relations can be derived between the various other components. We will be very

brief in reviewing this formalism, as our focus will be the string sigma model. Instead of

reproducing the full set of equations that determine the IIB theory, we present only those

statements that are of direct relevance to the worldsheet theory. Throughout this work, we

accord closely to the conventions and notation of [20]; the reader may refer at any point

to [20] to complement his/her reading.

From the point of view of the IIB string sigma model, the following combination of

the scalars turns out to play an important role

ω = u− v . (2.11)

Requiring κ symmetry on the worldsheet leads to the condition

ω = ω̄ . (2.12)

This is a choice that is unconventional from the point of view of the supergravity formalism,

but is natural from the perspective of the string sigma model.

We parameterize the scalar superfields as [21, 22]

u =
1 + W̄

√

2(W + W̄ )
e−2iθ , (2.13)

v = − 1−W
√

2(W + W̄ )
e2iθ , (2.14)

with the three variables W , W̄ and θ parameterizing the SU(1, 1). The gauge choice (2.12)

then corresponds to

θ = 0 , (2.15)

This leads to

ω =

√

2

W + W̄
. (2.16)

And

QA =
P̄A − PA

4i
. (2.17)

– 8 –
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Finally, the field strengths are given in terms of W by

P =
dW

W + W̄
, Q =

i

4

d(W − W̄ )

W + W̄
. (2.18)

To make contact with the IIB theory’s field content (2.1), we need to specify the map

between the superfields (2.3) and (2.4) and the physical fields. Each superfield involves an

expansion in the fermionic superspace coordinates θ. At zeroth order in this expansion, we

have

W |0 = τ = e−φ + iχ . (2.19)

Similarly, the zeroth components of the Λ superfield is

Λα|0 = λα . (2.20)

In the Wess-Zumino gauge, the supervielbein’s zeroth component is

Eα
m|0 = ψαm . (2.21)

At this point, we can simplify the discussion significantly by choosing to set all background

fermionic fields to zero

λα → 0 , ψαm → 0 . (2.22)

This identifies the class of backgrounds which is of most interest to us and that arises most

frequently in the literature. Given this, the zeroth components of the other fields are

F̂âb̂ĉ|0 = Fâb̂ĉ ≡
h
(1)

âb̂ĉ

2
+ i

h
(2)

âb̂ĉ

2
, (2.23)

Gâb̂ĉd̂ê|0 = Gâb̂ĉd̂ê . (2.24)

We also define F̂âb̂ĉ|0 ≡ Fâb̂ĉ. And, for completeness, we write the full form of the super-

vielbein

EA
M |0 =





êâm 0 0

0 δαµ 0

0 0 −δᾱµ̄



 ; (2.25)

with the zeroth components of the connection

ΩB
cA|0 = ωBc,A +U(1) connection ; (2.26)

ΩB
α,A|0 = ΩB

ᾱ,A|0 = 0 ; (2.27)

and the other combinations of indices being zero.

In addition, we will need the zeroth components of the Riemann and torsion superfields,

as well as various spinorial components of all the superfields. To make things even worse,

various first and second order spinorial derivatives of the superfields will also be needed;

i.e. some of the higher order terms in the superfield expansions appear in the sigma model.

These can be systematically, albeit sometimes tediously, obtained by juggling the super-

space Bianchi identities. We will present the relevant pieces as we need them, instead of

cataloging an incomplete set of lengthy equations out of context.

– 9 –
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2.2 The IIB string worldsheet in superspace

The action of the IIB string in a background represented by the superfields listed above

was written in [24]

I =

∫

d2σ

{

1

2

√
−hhijΦV â

i V
b̂
j ηâb̂ +

1

2
εijV B

i V
A
j BAB

}

, (2.28)

with3

V A
i ≡ ∂iz

MEA
M =

{

V â
i , V

α
i , V

ᾱ
i

}

, (2.29)

and

dB = F̂ +
¯̂F , (2.30)

Φ = ω = Φ̄ . (2.31)

The last statement is needed to assure that the action is κ symmetric. The task is to

expand this action in component form. This is generally a messy matter, which, however,

can be achieved using the algorithm of normal coordinate expansion.

2.3 The method of normal coordinate expansion in superspace

Normal coordinate expansion, as applied to bosonic sigma models, was first developed

in [15]. In these scenarios, the method helped to unravel some of the dynamics of highly

non-linear theories approximately, as expanded near a chosen point on the target manifold.

In the superspace incarnation, the technique is most powerful when used to expand an

action only in a submanifold of the target superspace. In particular, expanding in the

fermionic variables only, with the space coordinate left arbitrarily, the expansion truncates

by virtue of the Grassmanian nature of the fermionic coordinates; leading to an exact

expression for the action in component form. This can also be applied of course to the action

or equations of motion for the background superfields as well, and the technique has been

demonstrated in this context in many examples. As for the IIB sigma model, the expansion

has been applied in [25], to expand however the action in all of superspace, leading to a

linearized approximate form that can be used to study quantum effects. Our interest is

to get to an exact expression for (2.28) in component form, by fixing the κ symmetry and

leaving the space coordinates arbitrary. This approach was applied to the Heterotic string

in [17]. There, the absence of RR fields made the discussion considerably simpler. Our

approach will probe in this respect a new class of couplings by the use of this method.

However, many simplifications and techniques we will use are direct generalizations of the

corresponding methods applied in [17]. First, we briefly review the normal coordinate

expansion method in superspace. The reader is referred to [16, 17] for more information.

The superspace coordinates are written as

ZM = ZM
0 + yM . (2.32)

3Note that the index â here runs over all ten spacetime directions including the light-cone.
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We choose

ZM
0 = (xm, 0) , yM = (0, yµ) , (2.33)

hence expanding only in the fermionic submanifold. The action is then given by

I[Z] = e∆I[Z0] , (2.34)

with the operator ∆ defined by

∆ ≡
∫

d2σyA(σ)D̂A(σ) , (2.35)

and D̂A being the supercovariant derivative. This derivative is notationally distinguished

from DA appearing elsewhere in this work in that it involves the standard connection and

the U(1) connection. And we use the supervielbein to translate between tangent space and

superspacetime indices

D̂A ≡ EN
A (Z0)D̂N , yN ≡ yAEN

A . (2.36)

For our choice of expansion variables, we then have

yâ = 0 , yα = yµδαµ ≡ θα , yᾱ = yµ̄δᾱµ̄ ≡ θᾱ . (2.37)

The power of this technique is that it renders the process of expansion algorithmic. A

set of rules can be taught say to any well-trained mammal; in principle, human intervention

(for that matter the same mammal may be used again) is needed only at the final stage

when Bianchi identities may be used to determine some of the expansion terms. The rules

are as follows:

• Due to the definition of the normal coordinates, we have

∆yA = 0 . (2.38)

• Using super-Lie derivatives, it is straightforward to derive

∆V A
i = D̂iy

A + V C
i y

BTABC . (2.39)

• And the following identity is needed beyond second order

∆
(

D̂iy
A
)

= yBV D
i y

CRA
CDB . (2.40)

• Finally, when we apply ∆ to an arbitrary tensor with tangent space indices, we get

simply

∆XDE..
BC.. = yADAX

DE..
BC.. . (2.41)

In the next section, we outline the process of applying these rules to (2.28).
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3. Unraveling the action

There are three sets of difficulties that arise when attempting to apply the normal co-

ordinate expansion to (2.28). First, a priori, we need to expand to order 25 in θ before

the expansion truncates. This problem is remedied simply by fixing the κ symmetry with

the light-cone gauge, truncating the action to quartic order in θ, as we will show below.

The second problem is that the expansion terms will need first and second order fermionic

derivatives of the superfields. This requires us to play around with some of the Bianchi

identities to extract the additional information. The process is somewhat tedious, but

straightforward. The third problem is computational. Despite the simplifications induced

by the light-cone gauge choice, and the algorithmic nature of the process, it turns out

that the task is virtually impossible to perform by a human hand, while still maintaining

some level of confidence in the result. On average 104 terms arise at various stages of the

computation. The use of the computer for these analytical manipulations greatly simpli-

fies the problem. However, we find that, even with this help, the complexity is such that

computing time may be of order of many months, unless the task is approached with a set

of somewhat smarter computational steps and unless one makes use of the simplifications

that arise from the conditions imposed on the background fields as listed in the Introduc-

tion. We do not present all the messy details of these nuances, concentrating instead on

the general protocol.

At zeroth order, the action is simply

I(0) = I|0 =

∫

d2σ

{

1

2

√
−hhijωV â

i Vjâ +
1

2
εijV b̂

i V
â
j b

(1)

âb̂

}

. (3.1)

Note that this is written with respect to the Einstein frame metric.

At first order in ∆, the action becomes

I(1) = ∆I =

∫

d2σ

{

1

2

√
−hhij(∆Φ)V â

i V
b̂
j ηâb̂ +

√
−hhijΦ(∆V â

i )V
b̂
j ηâb̂ +

+
1

2
εijV B

i V
A
j y

CHCAB

}

, (3.2)

with

H ≡ dB . (3.3)

This result is not evaluated at for θ → 0 yet as further powers of ∆ will hit it.

3.1 Fixing the κ symmetry

Matters are simplified if we analyze the form of the action we expect from this expansion

once the κ symmetry is fixed. This will help us avoid manipulating many of the terms that

will turn out to be zero in the light-cone gauge anyways. To fix the κ symmetry, we define

σ± ≡ 1

2

(

σ0 ± σâ
)

, (3.4)
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where â is some chosen direction in space. For conventions on spinors, the reader is referred

to appendix A and [20]. We choose the spacetime fermions to satisfy the condition4

σ+θ = σ+θ̄ = 0 . (3.7)

Consider first all even powers of θ. These will necessarily come in one of the following

bilinear combinations

Aab ≡ θσ−abθ , Āab = θ̄σ−abθ̄ ; (3.8)

B ≡ θ̄σ−θ , Bab ≡ θ̄σ−abθ , Babcd ≡ θ̄σ−abcdθ . (3.9)

In these expressions, condition (3.7) has been used, and the Latin indices a, b, c, d are

transverse to the light cone directions. Furthermore, because of the self duality condition

σ̃(5) = σ(5) (3.10)

we have Babcd = 0.

Given the symmetry properties of the gamma matrices (see appendix A), we also know

Āab = −Aab , B̄ = B , B̄ab = −Bab , B̄abcd = Babcd . (3.11)

3.2 The expected form of the action

First, we note that, given that all background fermions (λ and ψm) are zero, only even

powers of θ can appear in the expansion. We assume that all background fields have

only non-zero components that are either transverse to the light-cone directions, or that

the light-cone indices in them come in pairs; and that all the fields depend only on the

transverse coordinates. For example, denoting the light-cone directions by ‘+’ and ‘−’, and
all transverse coordinates schematically by r, all fields can only depend on r; and a tensor

Xabc... can be non-zero only if either all a, b, c, . . . are transverse; or if ‘+’ and ‘−’ come

as in X−+bc... with b, c, . . . transverse or other light-cone pairs. These conditions lead to a

dramatic simplification of the expansion. In particular, given that a ‘−’ index is to appear

in all even powers of fermion bilinears, as in (3.8) and (3.9), we must pair each bilinear

with a V a
i to absorb the light-cone index ‘−’.

Let Θ represent either θ or θ̄. For example, schematically Θ2 ∼ θ2, θ̄θ, θ̄2. The action

consists then of terms of form Θ2nV a
i V

b
j , (DΘ)Θ2n−1V a

i and (DΘ)(DΘ)Θ2n. From the

expansion algorithm outlined above, with the use of equations (2.38)-(2.41), it is easy to

see that

number of V ’s + number of DΘ’s = 2

in each term. Let’s then look at each class of terms separately:

4Alternatively, we can choose [13]

σ
±
≡

1

2

(

σ
â
± iσ

b̂
)

, (3.5)

with â and b̂ being two arbitrary space directions. We can then impose

σ
+
θ = σ

−
θ̄ = 0 . (3.6)

It can be seen that this choice leads to a more complicated expansion for the action. It may still be necessary

to consider such choices for other classes of background fields than those we focus on in this work.
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• For terms of the form Θ2nV aV b, the only non-zero combinations are Θ2V +
i V

a
j and

Θ4V +
i V

+
j . This means in particular that the Wess-Zumino term involving H in (3.2)

does not contribute at quartic order since we must contract V +
i V

+
j by

√
−hhij .

• Terms of the form (DΘ)Θ2n−1V a
i are zero unless n = 1, because, otherwise, there is

shortage of V s to absorb all light-cone indices.

• Terms of the form (DΘ)(DΘ)Θ2n are zero for all n for the same reason as above.

Hence, the action must have the form

I ∼ ΘDΘ+Θ2 +Θ4V +V + , (3.12)

with the quartic piece receiving contributions only from the first two terms of (3.2). Hence,

the action truncates at quartic order in the fermions. And we focus on expanding only the

relevant parts.

4. More details

4.1 The quadratic terms and comparison to literature

As we expand (2.34), the quadratic terms in θ are very simple to handle, and can be done

by hand. On finds that zeroth components of Dω and D2ω are needed. For these, we note

the relation

dω = −ω
2

(

P + P̄
)

. (4.1)

Using the results of [20], we get

D̂αω|0 = D̂ᾱω|0 = 0 . (4.2)

D̂αD̂βω|0 = −ω i

24
σâb̂ĉαβ Fâb̂ĉ , D̂ᾱD̂β̄ω|0 = −ω i

24
σâb̂ĉαβ F̄âb̂ĉ , (4.3)

D̂ᾱD̂βω|0 = −ω
i

2
σâαβPâ|0 , D̂αD̂β̄ω|0 = −ω i

2
σâαβP̄â|0 . (4.4)

Note that the supercovariant derivative D̂A is associated with the standard supergravity

superconnection plus the U(1) contribution, as discussed in [20]. In these equations, a Latin

indices â, b̂, ĉ, . . . run over all ten spacetime directions, the transverse and the light-cone.

In the Wess-Zumino term, we need DαHβâb̂|0 and DᾱHβâb̂|0. These are found

D̂αHβâb̂|0 = i
ω

2
σ γ

âb̂β
σĉαγP̄ĉ|0 (4.5)

D̂ᾱHβâb̂|0 = i
ω

24
σ γ

âb̂β
σĉd̂êᾱγ F̄ĉd̂ê . (4.6)

Putting things together, we get a kinetic part for the fermions of the form

− i
2
ωVâ iΘ

ijσâD̂j θ̄ + c.c. = − i
2
ωVâ iΘ

ijσâDj θ̄ −
1

2
ωQb̂Vâ i V

b̂
j Θ

ijσâθ̄ + c.c. , (4.7)
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where the second term arises from the U(1) connection (the θ’s are charged under this

U(1) [20]), and we have defined

Θij ≡
√
−h hijθ − εij θ̄ . (4.8)

To compare with the literature, we want to write the quadratic part in the string frame.

Using

Diθ = D̃iθ +
1

8
Vi b̂

(

Pâ + P̄â
)

σâb̂θ (4.9)

we can write things in terms of the string frame covariant derivative D̃ with metric

G(str)
mn = ω gmn (4.10)

We note in particular the relation ∂â lnω = −(1/2)(Pâ+ P̄â). Switching to the string frame

rescales the vielbein and hence the various fields in the action as well

V â
i → ω−1/2V â

i , P → ω1/2P , F → ω3/2F , G→ ω5/2F . (4.11)

Finally, we rescale the spinors θ → ω−1/4θ so as to canonically normalize the kinetic term.

Collecting all this together, and using the properties of our gamma matrices, we write the

action as

Squad =

∫

d2σ (IDθ + IF + IG) + c.c. (4.12)

with

IDθ = − i
2
Vâ iΘ

ijσâD̃j θ̄ −

−1

2
Vâ iV

b̂
j Qb̂Θ

ijσâθ̄ +
1

4
Vâ iVb̂ jQĉΘ

ijσâb̂ĉθ̄ +
1

4
Vb̂ iV

b̂
j QâΘ

ijσâθ̄ (4.13)

and

IF = i
ω

32
Vâ jVd̂ iΘ

ijσb̂ĉd̂θ
(

Fâb̂ĉ + 3F̄âb̂ĉ
)

− i ω
32
Vâ iVd̂ jΘ

ijσb̂ĉd̂θ
(

Fâb̂ĉ − F̄âb̂ĉ
)

+

+ i
ω

96
Vd̂ iV

d̂
j Θ

ijσâb̂ĉθ
(

Fâb̂ĉ − F̄âb̂ĉ
)

+ i
ω

8
V â
i V

b̂
j Θ

ijσĉθFâb̂ĉ (4.14)

IG = − ω

96
V â
i V

b̂
j Θ

ijσĉd̂êθ̄Gâb̂ĉd̂ê . (4.15)

These expressions agree with [28] except for a numerical factor in one of the terms. In [28],

the first term of the second line of (4.13) appears with an additional factor of 2. This term

arises from the U(1) charge associated with the spinor. We believe that the discrepancy

is accounted for by a typo in [28] (perhaps related to adding the complex conjugate piece

to the action). Otherwise, our expressions are identical. We conclude that the result, to

quadratic order in the spinors, agrees with the literature.5

5The minor issue regarding the coefficient of the U(1) charge cannot be settled through comparison to

other sources of literature because this term vanishes for cases involving AdS backgrounds.

– 15 –



J
H
E
P
0
4
(
2
0
0
4
)
0
2
6

4.2 The quartic terms

At quartic order in θ, the action is much more difficult to find. Indeed, the use of computa-

tion by machine becomes necessary. We do not present all the details, but only some of the

important relations that are needed to check the results. In this section, to avoid clutter

in index notation, indices a, b, c, . . . will run over all ten spacetime directions as opposed to

using â, b̂, ĉ, . . . as we did in the rest of the paper.

First derivatives of some of the Riemann tensor components arise; particularly,

D̂ᾱR̂
γ2
βaγ1

and D̂αR̂
γ2
β̄aγ1

. Using the results of [20], it is straightforward to find

D̂αR̂
γ2
β̄aγ1

|0 =
i

8
σcdγ2γ1

(

σaβ̄δD̂αT
δ
cd + σcβ̄δD̂αT

δ
ad + σdβ̄δD̂αT

δ
ca

)∣

∣

∣

0
+
i

2
δγ2γ1Paσ

b
αβ̄P̄b|0 ; (4.16)

D̂ᾱR̂
γ2
βaγ1

|0 = − i
8
σcdγ2γ1

(

σaβδ̄D̂ᾱT
δ̄
cd+σcβδ̄D̂ᾱT

δ̄
ad+σdβδ̄D̂ᾱT

δ̄
ca

)∣

∣

∣

0
− i

2
δγ2γ1 P̄aσ

b
ᾱβPb|0 . (4.17)

We note the distinction between R and R̂; the latter includes the curvature from the U(1)

gauge field, as defined in [20]. To avert confusion, we also note that the covariant derivative

D̂A is with respect to R̂; whereas the one appearing elsewhere in the text as D does not

involve the U(1) connection. This aspect of our notation then differs slightly from that

of [20].

We need a series of first spinorial derivatives of the torsion. For these, we need to use

the Bianchi identity
∑

(ABC)

D̂AT
D
BC + TEABT

D
EC − R̂D

ABC = 0 , (4.18)

where the sum is over graded cyclic permutations. We then find

D̂αT
δ
cd|0 = Rδ

cdα − D̂dT
δ
αc − D̂cT

δ
dα + 2T β̄α[dT

δ
c]β̄ − 2T βα[dT

δ
c]β + δδαP̄[cPd] , (4.19)

and

D̂ᾱT
δ̄
bc|0 = −D̂bT

δ̄
cᾱ − D̂cT

δ̄
ᾱb +Rδ̄

bcᾱ + 2T γ̄ᾱ[cT
δ̄
b]γ̄ − 2T γᾱ[cT

δ̄
b]γ + δδ̄ᾱP̄[bPc] . (4.20)

We also have

D̂αT
δ
β̄γ̄ |0 = −

i

24
σdβ̄γ̄σ

δβ
d σ

abc
αβ Fabc +

i

24
δδβ̄σ

abc
αγ̄ Fabc +

i

24
δδγ̄σ

abc
αβ̄ Fabc . (4.21)

In all these and subsequent equations, the right hand sides are to be evaluated as zeroth

order in θ.

As if first derivatives are not enough of a mess, two derivatives of the torsion are also

needed. For example, D̂αD̂βT
δ
γ̄,a arises and is found

D̂αD̂βT
δ
γ̄a|0 = − 3

16
σdeδγ̄

(

− 1

32
K γ
adeβ D̂αD̂γω + 3P[aσ

γ
de]β

D̂αD̂γω + 3iσ[aβγD̂αT
γ
de]

)

−

− 1

48
σ cdeδ
aγ̄

(

− 1

32
K γ
cdeβ D̂αD̂γω+3P[cσ

γ
de]β D̂αD̂γω+3iσ[cβγD̂αT

γ
de]

)

, (4.22)

where we define the matrix

Kcde ≡ σcdefghF̄
fgh + 3F̄ fg

[c σde]fg + 52F̄ f
[cd σe]f + 28F̄cde . (4.23)
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To find D̂ᾱD̂βT
γ2
γ1a, we use the standard statement

[D̂A, D̂B} = −TCABD̂C − R̂D
ABC . (4.24)

And we get

D̂ᾱD̂βT
γ2
γ1a|0 = −T bᾱβD̂bT

γ2
γ1a +Rδ

ᾱβγ1T
γ2
δa +Rb

ᾱβaT
γ2
γ1b
− T δγ1aR

γ2
ᾱβδ − D̂βD̂ᾱT

γ2
γ1a . (4.25)

We need D̂αD̂β̄T
γ2
γ1a, which is

D̂αD̂β̄T
γ2
γ1a|0 = −D̂αD̂γ1T

γ2
β̄a
− T bβ̄γ1

D̂αT
γ2
ba − D̂αR

γ2
β̄aγ1

−
−T ᾱγ1aσbᾱβ̄σ

γ2δ
b D̂αD̂δω + T ᾱγ1aδ

γ2
ᾱ δ

δ
β̄D̂αD̂δω + T ᾱγ1aδ

γ2
β̄
δδᾱD̂αD̂δω . (4.26)

Finally, we collect the zeroth order components of some of the superfields that arise in

the computation as well. These can be found in [20], but we list them for completeness:

T aαβ̄ |0 = −iσaαβ . (4.27)

T γ̄aβ |0 = − 3

16
σbcγβ F̄abc −

1

48
σ γ
abcdβ F̄ bcd . (4.28)

T γaβ |0 = iσbcdeγβ Zabcde . (4.29)

Rαβ,ab|0 = i
3

4
σcαβF̄abc +

i

24
σabcdeαβF̄

cde . (4.30)

Rαβ̄,ab|0 = − 1

24
σcdeαβ gabcde . (4.31)

Haβγ |0 = −iωσaβγ . (4.32)

Haβ̄γ̄ |0 = −iωσaβγ . (4.33)

All other components as they arise in the expansion are zero. The final result is given

in (1.13).

5. Discussion

In this work, we derived the component form of the IIB worldsheet theory in backgrounds

involving RR fluxes. In the light-cone gauge, the action was found to truncate to quartic

order in the spacetime spinors. Terms quadratic in the fermions could be compared to

results already existing in the literature; and we concluded that our computation agrees

with the existing results (modulo a term we commented on in section 4.1). The quartic

interactions terms are most interesting in addressing issues of integrability of the worldsheet

and were computed as well. The complete results were summarized in equations (1.4)

and (1.13).

The form of our action is such that the spinors θ may dynamically acquire a non-trivial

vacuum configuration depending on the strengths of the various background fields. There

is also an interesting coupling to the covariant derivative of the field strengths DF . And

it is easy to see that many of the terms vanish when one considers center of mass motion

of the closed string. An important program is then to arrange for simplified semi-classical
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settings and see how turning on the various couplings independently affects the vacuum of

the worldsheet theory. This can help us develop intuition about the effects of RR fields on

closed string dynamics. We defer such a complete analysis to an upcoming work [29].

Other future directions include writing the IIA action in a similar manner, or by

using T-duality (see, for example, [18]). Furthermore, given the algebraic complexity of

the computations involved in deriving some parts of our action, it can be useful to have

some of the details of our results checked independently, preferably with different methods.

Finally, it would be helpful to develop general computational techniques that allow us

to analyze, at least semi-classically, dynamics of closed strings in arbitrary backgrounds

- with the RR fields taken into account. In this regard, approximation methods such as

expansion about center of mass motion — which is in some respects an extension of the

normal coordinate expansion technique we used in superspace — may be used. We hope

to address some of these issues in the future.
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A. Spinors and conventions

In this appendix, the indices a, b, c, · · · run over all ten spacetime directions. Our spinors

are Weyl but not Majorana. They are then complex and have sixteen components. The

associated 16× 16 gamma matrices satisfy
{

σa, σb
}

= 2ηab , (A.1)

with the metric

ηab = diag(+1,−1,−1, . . . ,−1) . (A.2)

Note that the signature is different from the standard one in use in modern literature. This

is so that we conform to the equations appearing in [20]. Also, the worldsheet metric hij

has signature (−,+) for space and time, respectively. Throughout, the reader may refer

to [20] to determine more about the spinorial algebra and identities that we are using.

However, we make no distinction between σ and σ̂ as defined in [20] as this will be obvious

from the context.

We note that σa, σabcd and σabcde are symmetric; while σab and σabc are antisymmetric;

and σabcde is self-dual.

With the choice given in (3.4), we then have

σ+σ− + σ−σ+ = 1 . (A.3)

And complex conjugation is defined so that

σa = σa . (A.4)
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Conjugation also implies

θ1θ2 = θ̄2θ̄1 . (A.5)

Finally, antisymmetrization is defined as

σab ≡ σ[aσb] , (A.6)

with a conventional 2! hidden by the braces.

Using the completeness relation and the algebra above, we have, for any matrix Qαβ

with lower indices

Qαβ =
1

16

(

Tr[Qσa]σ
a
αβ −

1

3!
Tr[Qσabc]σ

abc
αβ +

1

5!
Tr[Qσabcde]σ

abcde
αβ

)

. (A.7)

This allows us, for example, to rearrange certain combinations such as

(θ̄σ−(r)θ)(θ̄σ−(s)θ) =
1

2

sgn(r)

162
(θ̄σ−σbcθ̄)(θσ−σefθ)Tr[σbcσ(s)σefσ(r)] , (A.8)

sgn(r) ≡











+1 for r = 0

−1 for r = 2

+1 for r = 4

; (A.9)

this identity arises repeatedly in the computations. Finally, to avert confusion, we also

note the summation convention used

UAVA = UaVa + UαVα − U ᾱVᾱ . (A.10)
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