
Damped Harmonic Oscillator
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A simple harmonic oscillator subject to linear damping may
oscillate with exponential decay, or it may decay biexponen-
tially without oscillating, or it may decay most rapidly when
it is critically damped. When driven sinusoidally, it resonates
at a frequency near the natural frequency, and with very large
amplitude when the damping is slight. Because the system is
linear, we can superpose solutions, leading to Green’s method
and the usefulness of Laplace transforms.
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Many systems exhibit mechanical stability: disturbed from an equilibrium position they
move back toward that equilibrium position. This is the recipe for oscillation. Provided
that the disturbance from equilibrium is small, virtually any mechanically stable system
will experience a linear restoring force, giving rise to simple harmonic motion.

We will start with a single degree of freedom, which will illustrate most of the impor-
tant behavior: decaying oscillation and resonance. We will soon generalize to a system
with an arbitrary number of degrees of freedom, where we will find that we can always
find suitable combinations of coordinates to reduce that problem to a set of decoupled
one-dimensional oscillators. The simple harmonic oscillator model, therefore, is ubiq-
uitous in physics. You find it in mechanics; in electromagnetism, where it describes
electromagnetic waves, plasmon resonances, and laser modes; atomic physics, where it
describes coupling of an atom to the electromagnetic field. . . I suspect it arises in every
subdiscipline of physics. In fact, one of my graduate physics professors quipped that it
couldn’t be a physics course with the simple harmonic oscillator.

Our point of departure is the general form of the lagrangian of a system near its position
of stable equilibrium, from which we deduce the equation of motion. We will then con-
sider both unforced and periodically forced motion before turning to general methods of
solving the linear second-order differential equations that describe oscillatory systems.

1. General Form of the Lagrangian

We may Taylor expand the potential about q = 0:

U (q) =U (0)+ dU

d q

∣∣∣∣
0

q + 1

2

d 2U

d q2

∣∣∣∣
0

q2 +·· · (1)

The first term on the right-hand side is just a constant; it cannot influence the dynamics
since the variational derivative kills all constants. The second term vanishes since we
expand about a minimum. The third term has to be positive (otherwise, we expand
about either a maximum or a saddle point). So,

U (q) =U (0)+ 1

2

d 2U

d q2 q2 +·· · =U0 + 1

2
kq2 +·· · (2)
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2. DAMPED SIMPLE HARMONIC OSCILLATOR

We may also expand the kinetic energy about its equilibrium value, 0:

T = 1

2
mq̇2 (3)

for some constant m.

Lagrange’s equations for this system then become

0 = d

d t

(
∂L

∂q̇

)
− ∂L

∂q

=
(
∂2L

∂q̇2

)
q̈ −

(
∂2L

∂q2

)
q

0 = q̈ + k

m
q (4)

If k = ∂2U
∂q2 =− ∂2L

∂q2 is negative, then this gives exponential solutions and the equilibrium is

unstable. If it is positive, then the equilibrium is stable and the system oscillates about
the equilibrium position q = 0. In that case, Eq. (4) is the simple harmonic oscillator
(SHO) equation, with solutions of the form

q(t ) = A cos
(
ω0t +ϕ)= A Ree−i (ω0t+ϕ)

where ω0 ≡p
k/m is called the natural frequency of the oscillator and the coefficients I am using −i in the exponent to be consis-

tent with quantum mechanics. A plane wave
of the form ei (kx−ωt ) moves to positive x if
k is positive. Furthermore, the momentum
of the wave is }k, not −}k, which is possible
because the time component carries the nega-
tive sign.

I am using −i in the exponent to be consis-
tent with quantum mechanics. A plane wave
of the form ei (kx−ωt ) moves to positive x if
k is positive. Furthermore, the momentum
of the wave is }k, not −}k, which is possible
because the time component carries the nega-
tive sign.

A and ϕ may be determined from initial conditions.

There is another way to interpret the complex expression. Moving the real number A
inside and rearranging gives

q(t ) = Re
[(

Ae−iϕ
)

e−iω0t
]
= Re

[
Ae−iω0t

]
whereA= Ae−iφ is the complex amplitude of oscillation. The single complex amplitude
contains both the magnitude and phase information of the oscillation.

2. Damped Simple Harmonic Oscillator

If the system is subject to a linear damping force, F = −bṙ (or more generally, −b j ṙ j ),
such as might be supplied by a viscous fluid, then Lagrange’s equations must be modi-
fied to include this force, which cannot be derived from a potential. Recall that we had
developed the expression

d

d t

(
∂L

∂q̇

)
− ∂L

∂q
= Fext · ∂r

∂q
(5)

If the equations of transformation do not depend explicitly on the time—so that
∂r j /∂q = ∂ṙ j /∂q̇—then we can simplify the damping term:

−∑
j

b j ṙ j
∂r j

∂q
=−∑

j
b j ṙ j

∂ṙ j

∂q̇
=− ∂

∂q̇

∑
j

b j

2
(v j )2 ≡−∂F

∂q̇
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2. DAMPED SIMPLE HARMONIC OSCILLATOR

The sum in this final expression, which can be generalized to N particles in the obvious
way, is called Rayleigh’s dissipation function, F. The modified Lagrange equations are Rayleigh’s dissipation function allows a gen-

eral linear damping term to be incorporated
into the Lagrangian formalism.

Rayleigh’s dissipation function allows a gen-
eral linear damping term to be incorporated
into the Lagrangian formalism.then

d

d t

(
∂L

∂q̇

)
− ∂L

∂q
+ ∂F

∂q̇
= 0 (6)

For a single degree of freedom with linear damping, we have F= b
2 q̇2, so

mq̈ +kq +bq̇ = 0 or q̈ +2βq̇ +ω2
0q = 0 (7)

where we have definedβ= b/2m, which has the dimensions of a frequency, and is called
the damping parameter. We may solve this equation with the Ansatz q = e st , which
slightly biases us to expect exponential solutions, or with the Ansatz q = e−iωt , which is
more appropriate when we expect oscillatory solutions. Making the latter choice yields
the algebraic equation

−ω2q −2iβωq +ω2
0q = 0 =⇒ ω= iβ±

√
ω2

0 −β2

This yields two linearly independent solutions to the second-order differential equation,
Eq. (11), unless β=ω0. This special case is called critical damping; the second solution
takes the form te−βt when β=ω0.

When β < ω0, the oscillator is underdamped and oscillates when released from rest
away from its equilibrium position. Let An underdamped oscillator vibrates at angu-

lar frequency ω1 with decreasing amplitude
when released away from its equilibrium posi-
tion. For light damping, this frequency is just
slightly smaller than the natural frequency ω0.

An underdamped oscillator vibrates at angu-
lar frequency ω1 with decreasing amplitude
when released away from its equilibrium posi-
tion. For light damping, this frequency is just
slightly smaller than the natural frequency ω0.

ω1 ≡
√
ω2

0 −β2 (8)

Then the solution may be expressed

q(t ) = Ae−βt cos(ω1t +ϕ) (9)

When β>ω0, the oscillator is overdamped; the two solutions decay exponentially with
different time constants:

q(t ) = A+e
−

(
β+

√
β2−ω2

0

)
t + A−e

−
(
β−

√
β2−ω2

0

)
t

(10)

The second term has the longer time constant; it tends to dominate at long times.
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Figure 1: Overdamped (olive), crit-
ically damped (purple), and under-
damped (blue) harmonic oscillators
released from rest.
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3. DRIVEN DSHO

3. Driven DSHO

A damped simple harmonic oscillator subject to a sinusoidal driving force of angular fre-
quency ω will eventually achieve a steady-state motion at the same frequency ω. How
long it must be driven before achieving steady state depends on the damping; for very
light damping it can take a great many cycles before the transient solution to the homo-
geneous differential equation decays sensibly to zero, as illustrated in Fig. 2.
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Figure 2: Response of
a lightly damped sim-
ple harmonic oscillator
driven from rest at its
equilibrium position. In
this case, ω0/2β ≈ 20
and the drive frequency
is 15% greater than
the undamped natural
frequency.

The equation of motion for the driven damped oscillator is

q̈ +2βq̇ +ω2
0q = F0

m
cosωt = Re

(
F0

m
e−iωt

)
(11)

Rather than solving the problem for the sinusoidal forcing function, let us instead look
for a complex function of time, z(t ), that satisfies essentially the same equation,

z̈ +2βż +ω2
0z = F0

m
e−iωt (12)

If we can find such a function, then its real part q = Re z solves Eq. (11). Knowing that the
solution will eventually oscillate at the same frequency as the drive, we make the Ansatz
z =Ae−iωt , thereby obtaining the particular solution

A= F0/m

ω2
0 −ω2 −2βωi

or q = Re

[
F0/m

ω2
0 −ω2 −2βωi

e−iωt

]
(13)

where the complex amplitude A encodes both the (real) amplitude A and the phase of
the oscillator with respect to the drive,A= Ae−iϕ, and

A = F0/m√
(ω2

0 −ω2)2 +4β2ω2
and ϕ= tan−1

(
2ωβ

ω2 −ω2
0

)

The complete solution is then the sum of the general solution, Eq. (9), and the particular
solution Eq. (13).
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3. DRIVEN DSHO

Exercise 1 Show that the frequency of maximum amplitude (the resonant frequency) is

ωR =
√
ω2

0 −2β2.

The width of the resonance may be characterized by the quality factor of the resonator,
a dimensionless quantity that is defined by Roughly speaking, the quality of a resonator is

the number of oscillations it undergoes before
its initial energy is reduced by a factor of 1/e.

Roughly speaking, the quality of a resonator is
the number of oscillations it undergoes before
its initial energy is reduced by a factor of 1/e.

Q ≡ ωR

2β
=

√
ω2

0 −2β2

2β
(14)

Figure 3 shows resonance curves for damped driven harmonic oscillators of several val-
ues of Q between 1 and 256. For a lightly damped oscillator, you can show that Q ≈ ω0

∆ω ,

where ∆ω is the frequency interval between the points that are down to 1/
p

2 from the
maximum amplitude. The width is really defined with respect to the energy of the oscil-
lator, which is proportional to the square of the amplitude. Hence, the factor of 1/

p
2.

Exercise 2 If a tuning fork oscillating at 440 Hz takes 4 seconds to lose half its energy,
roughly what is its quality? Ans: ≈ 2500.
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Figure 3: Amplitude and phase of a damped driven simple harmonic oscillator for several different
quality factors (Q = 1, 4, 16, 64, and 256).
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4. GREEN’S FUNCTION

4. Green’s Function

If the damped oscillator is driven by an arbitrary function of time,

q̈ +2βq̇ +ω2
0q = F (t )

m
(15)

there are a variety of ways to solve for q(t ). All are based on the observation that the
left-hand side of this equation is a linear operator on q , L(q). That is,

L= d 2

d t 2 +2β
d

d t
+ω2

0

Linear operators satisfy

L(q1 +q2) =L(q1)+L(q2)

L(α1q1 +α2q2) =α1L(q1)+α2L(q2)

This means that if we have a sum of forcing functions, Fi (t ) = m fi (t ), then

L

(∑
i
αi qi (t )

)
=∑

i
L

(
αi qi (t )

)=∑
i
αi fi (t )

which is the principle of superposition. It says that we are free to break apart the forcing
function into pieces, solve each piece separately, and add up the resulting solutions.

George Green (1793–1841) looked for a solution to Eq. (15) by breaking apart the forcing
function into a series of brief impulses, short time intervals ∆t of constant force:

L(q(t )) =


0 t < t0 + j∆t

f j t0 + j∆t < t < t0 + ( j +1)∆t

0 t > t0 + ( j +1)∆t

The complete temporal behavior of q is then obtained by adding up all the individual
solutions q j (t ) corresponding to all the little impulses f j :

q(t ) =∑
j

q j (t )

In the limit that ∆t goes to zero, we may represent the forcing functions by f j (t ′) =
f j δ(t ′− t j ), where δ(t ) is Dirac’s delta function. Recall that the delta function δ(x) has
the properties

• δ(x) = 0 if x 6= 0
• δ(0) →∞
•

∫
δ(x)d x = 1, provided that the range of integration includes x = 0, and vanishes

otherwise.

Think of δ(x) as an infinitely tall spike at x = 0 with unit area. Using the delta function,
we can represent the forcing function via

f (t ) =
∫ ∞

−∞
f (t ′)δ(t − t ′)d t ′
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4. GREEN’S FUNCTION

where t ′ is a dummy variable of integration. The only time that the delta function is
nonzero is when t = t ′. Integrating over this time yields f (t ) times the integral of the
delta function, which is 1 by definition. So, if we knew the solution to

G̈ +2βĠ +ω2
0G = δ(t − t ′) (16)

for a function G(t , t ′), we could multiply G(t , t ′) by f (t ′) and integrate over all times t ′ < t
to get the solution at t :

q(t ) =
∫ t

−∞
G(t , t ′) f (t ′)d t ′ (17)

where f (t ′) = F (t ′)/m.

Exercise 3 Show that

G(t , t ′) =
{

0 t < t ′
1
ω1

e−β(t−t ′) sinω1(t − t ′) t ≥ t ′
(18)

Hint: Solve for t 6= t ′ and then integrate the defining differential equation from t ′− ε to
t ′+ε and take the limit as ε−> 0. Then match the solution to G(t , t ′) = 0 for t < t ′.
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5. LAPLACE TRANSFORM

5. Laplace Transform

Another important technique for solving Eq. (15) is via an integral transform called the
Laplace transform. The transform converts time derivatives into polynomials, which
produces an algebraic equation. These are easier to solve than differential equations.
After solving the algebraic equation, we then apply the inverse Laplace transform to re-
turn to a time-domain expression that gives q(t ).

First, we define the Laplace transform of a function of time, f (t ), as

F (s) =L
{

f (t )
}≡ ∫ ∞

0
e−st f (t )d t (19)

Since we will be applying this to time derivatives of generalized coordinates, let’s work
out expressions for the Laplace transform of d f /d t and d 2 f /d t 2:

L

{
d f

d t

}
=

∫ ∞

0
e−st d f

d t
d t = e−st f

∣∣∞
0 +

∫ ∞

0
se−st f d t = sF (s)− f (0) (20)

L

{
d 2 f

d t 2

}
=

∫ ∞

0
e−st d 2 f

d t 2 d t = s2F (s)− s f (0)− f ′(0) (21)

where the prime indicates differentiation with respect to the argument of the function.

We now seek to apply the Laplace transform to Eq. (15). Let us assume that we have
situated the origin of time such that the system is quiescent and the forcing function
vanishes for t < 0. Then we may take all of the integrated terms to vanish, and get

(s2 +2βs +ω2
0)Q(s) =L

{
F (t )

m

}
= 1

m
F (s) (22)

Solving for the Laplace transform of q , Q(s), gives

Q(s) = F (s)/m

s2 +2βs +ω2
0

(23)

We now apply the Laplace transform inversion integral (the Bromwich integral),

f (t ) = 1

2πi

∫ γ+i∞

γ−i∞
Q(s)e st d s (24)

where γ is a real constant that exceeds the real part of all the singularities of F (s), to
solve for q(t ). Equation (24) is derived in the notes on contour integration.
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5. LAPLACE TRANSFORM

Example 1 Suppose that the oscillator described by Eq. (11) is thumped at t = 0 with a
delta-function impulse: F (t ) =αδ(t ). Find q(t ) using the Laplace transform method.

According to Eq. (23), we need first to calculate the Laplace transform of the forc-
ing function:

L {αδ(t )} =
∫ ∞

0
e−stαδ(t )d t =α

By Eq. (23) and the inversion integral, we have

q(t ) = 1

2πi

∫ γ+i∞

γ−i∞
α/m

s2 +2βs +ω2
0

e st d s

The integrand has poles at the roots of the quadratic equation in the denomina-

tor, s± =−β±
√
β2 −ω2

0, both of which lie to the left of s = 0. So, we may integrate

along the imaginary axis and close in the left half-plane, where the exponen-
tial sends the integrand to zero for t > 0. By the residue theorem, the integral
is therefore 2πi times the sum of the two residues. Writing the denominator as
(s − s+)(s − s−), the residues are

a+
−1 =

α/m

s+− s−
e s+t and a−

−1 =
α/m

s−− s+
e s−t

Combining these results gives

q(t ) = α

m

e−βt

2
√
β2 −ω2

0

(
e

√
β2−ω2

0t −e−
√
β2−ω2

0t
)

Noting that we have called ω1 =
√
ω2

0 −β2, we may rewrite this results as

q(t ) = α

m

e−βt

iω1

e iω1t −e−iω1t

2i
= αe−βt

mω1
sin(ω1t )

consistent with what we found before.
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